Contents

1 Basics Geometry
1.1 Points, Lines, and Planes ... 2
1.2 Segments and Distance ... 11
1.3 Angles and Measurement ... 21
1.4 Midpoints and Bisectors .. 33
1.5 Angle Pairs .. 44
1.6 Classifying Polygons .. 52
1.7 Chapter 1 Review .. 64
1.8 Study Guide .. 67

2 Reasoning and Proof
2.1 Inductive Reasoning .. 72
2.2 Conditional Statements .. 79
2.3 Deductive Reasoning ... 85
2.4 Algebraic and Congruence Properties 91
2.5 Proofs about Angle Pairs and Segments 99
2.6 Chapter 2 Review .. 110
2.7 Study Guide .. 112

3 Parallel and Perpendicular Lines
3.1 Lines and Angles ... 115
3.2 Properties of Parallel Lines 126
3.3 Proving Lines Parallel ... 137
3.4 Properties of Perpendicular Lines 151
3.5 Parallel and Perpendicular Lines in the Coordinate Plane ... 162
3.6 The Distance Formula ... 174
3.7 Chapter 3 Review .. 181
3.8 Study Guide .. 183

4 Triangles and Congruence
4.1 Triangle Sums .. 186
4.2 Congruent Figures ... 200
4.3 Triangle Congruence using SSS and SAS 209
4.4 Triangle Congruence using ASA, AAS, and HL 224
4.5 Isosceles and Equilateral Triangles 238
4.6 Chapter 4 Review .. 249
4.7 Study Guide .. 252

5 Relationships with Triangles
5.1 Midsegments .. 255
5.2 Perpendicular Bisectors and Angle Bisectors in Triangles .. 263
5.3 Medians and Altitudes in Triangles 277
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Inequalities in Triangles</td>
<td>285</td>
</tr>
<tr>
<td>5.5</td>
<td>Extension: Indirect Proof</td>
<td>293</td>
</tr>
<tr>
<td>5.6</td>
<td>Chapter 5 Review</td>
<td>295</td>
</tr>
<tr>
<td>5.7</td>
<td>Study Guide</td>
<td>297</td>
</tr>
<tr>
<td>6</td>
<td>Polygons and Quadrilaterals</td>
<td>300</td>
</tr>
<tr>
<td>6.1</td>
<td>Angles in Polygons</td>
<td>301</td>
</tr>
<tr>
<td>6.2</td>
<td>Properties of Parallelograms</td>
<td>310</td>
</tr>
<tr>
<td>6.3</td>
<td>Proving Quadrilaterals are Parallelograms</td>
<td>320</td>
</tr>
<tr>
<td>6.4</td>
<td>Rectangles, Rhombuses and Squares</td>
<td>330</td>
</tr>
<tr>
<td>6.5</td>
<td>Trapezoids and Kites</td>
<td>340</td>
</tr>
<tr>
<td>6.6</td>
<td>Chapter 6 Review</td>
<td>355</td>
</tr>
<tr>
<td>6.7</td>
<td>Study Guide</td>
<td>358</td>
</tr>
<tr>
<td>7</td>
<td>Similarity</td>
<td>361</td>
</tr>
<tr>
<td>7.1</td>
<td>Ratios and Proportions</td>
<td>362</td>
</tr>
<tr>
<td>7.2</td>
<td>Similar Polygons</td>
<td>369</td>
</tr>
<tr>
<td>7.3</td>
<td>Similarity by AA</td>
<td>375</td>
</tr>
<tr>
<td>7.4</td>
<td>Similarity by SSS and SAS</td>
<td>383</td>
</tr>
<tr>
<td>7.5</td>
<td>Proportionality Relationships</td>
<td>391</td>
</tr>
<tr>
<td>7.6</td>
<td>Similarity Transformations</td>
<td>403</td>
</tr>
<tr>
<td>7.7</td>
<td>Extension : Self-Similarity</td>
<td>412</td>
</tr>
<tr>
<td>7.8</td>
<td>Chapter 7 Review</td>
<td>415</td>
</tr>
<tr>
<td>7.9</td>
<td>Study Guide</td>
<td>418</td>
</tr>
<tr>
<td>8</td>
<td>Right Triangle Trigonometry</td>
<td>421</td>
</tr>
<tr>
<td>8.1</td>
<td>The Pythagorean Theorem</td>
<td>422</td>
</tr>
<tr>
<td>8.2</td>
<td>Converse of the Pythagorean Theorem</td>
<td>432</td>
</tr>
<tr>
<td>8.3</td>
<td>Using Similar Right Triangles</td>
<td>439</td>
</tr>
<tr>
<td>8.4</td>
<td>Special Right Triangles</td>
<td>449</td>
</tr>
<tr>
<td>8.5</td>
<td>Tangent, Sine and Cosine</td>
<td>460</td>
</tr>
<tr>
<td>8.6</td>
<td>Inverse Trigonometric Ratios</td>
<td>469</td>
</tr>
<tr>
<td>8.7</td>
<td>Chapter 8 Review</td>
<td>478</td>
</tr>
<tr>
<td>8.8</td>
<td>Study Guide</td>
<td>482</td>
</tr>
<tr>
<td>9</td>
<td>Circles</td>
<td>485</td>
</tr>
<tr>
<td>9.1</td>
<td>Parts of Circles & Tangent Lines</td>
<td>486</td>
</tr>
<tr>
<td>9.2</td>
<td>Properties of Arcs</td>
<td>500</td>
</tr>
<tr>
<td>9.3</td>
<td>Properties of Chords</td>
<td>509</td>
</tr>
<tr>
<td>9.4</td>
<td>Inscribed Angles</td>
<td>520</td>
</tr>
<tr>
<td>9.5</td>
<td>Angles of Chords, Secants, and Tangents</td>
<td>532</td>
</tr>
<tr>
<td>9.6</td>
<td>Segments of Chords, Secants, and Tangents</td>
<td>544</td>
</tr>
<tr>
<td>9.7</td>
<td>Extension: Writing and Graphing the Equations of Circles</td>
<td>557</td>
</tr>
<tr>
<td>9.8</td>
<td>Chapter 9 Review</td>
<td>562</td>
</tr>
<tr>
<td>9.9</td>
<td>Study Guide</td>
<td>565</td>
</tr>
<tr>
<td>10</td>
<td>Perimeter and Area</td>
<td>570</td>
</tr>
<tr>
<td>10.1</td>
<td>Triangles and Parallelograms</td>
<td>571</td>
</tr>
<tr>
<td>10.2</td>
<td>Trapezoids, Rhombi, and Kites</td>
<td>581</td>
</tr>
<tr>
<td>10.3</td>
<td>Areas of Similar Polygons</td>
<td>591</td>
</tr>
<tr>
<td>10.4</td>
<td>Circumference and Arc Length</td>
<td>596</td>
</tr>
<tr>
<td>10.5</td>
<td>Areas of Circles and Sectors</td>
<td>604</td>
</tr>
</tbody>
</table>
10.6 Chapter 10 Review ... 614
10.7 Study Guide ... 618

11 Surface Area and Volume 621
11.1 Exploring Solids ... 622
11.2 Surface Area of Prisms and Cylinders ... 633
11.3 Surface Area of Pyramids and Cones ... 643
11.4 Volume of Prisms and Cylinders ... 653
11.5 Volume of Pyramids and Cones ... 662
11.6 Surface Area and Volume of Spheres ... 672
11.7 Extension: Exploring Similar Solids ... 680
11.8 Chapter 11 Review ... 686
11.9 Study Guide ... 689

12 Rigid Transformations 693
12.1 Exploring Symmetry ... 694
12.2 Translations ... 704
12.3 Reflections ... 710
12.4 Rotations ... 723
12.5 Composition of Transformations ... 739
12.6 Extension: Tessellating Polygons ... 750
12.7 Chapter 12 Review ... 752
12.8 Study Guide ... 754
Chapter 1
Basics Geometry

Chapter Outline

1.1 Points, Lines, and Planes
1.2 Segments and Distance
1.3 Angles and Measurement
1.4 Midpoints and Bisectors
1.5 Angle Pairs
1.6 Classifying Polygons
1.7 Chapter 1 Review
1.8 Study Guide

In this chapter, students will learn about the building blocks of geometry. We will start with what the basic terms: point, line and plane. From here, students will learn about segments, midpoints, angles, bisectors, angle relationships, and how to classify polygons.
1.1 Points, Lines, and Planes

Learning Objectives

- Understand the terms point, line, and plane.
- Draw and label terms in a diagram.

Review Queue

1. List and draw pictures of five geometric figures you are familiar with.
2. What shape is a yield sign?

Know What? Geometry is everywhere. Remember these wooden blocks that you played with as a kid? If you played with these blocks, then you have been “studying” geometry since you were a child.

How many sides does the octagon have? What is something in-real life that is an octagon?

Geometry: The study of shapes and their spatial properties.
Building Blocks

Point: An exact location in space.

A point describes a location, but has no size. Examples:

![Diagram of points A, L, and F]

<table>
<thead>
<tr>
<th>Label It</th>
<th>Say It</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>point A</td>
</tr>
</tbody>
</table>

Line: Infinitely many points that extend forever in both directions.

A line has direction and location is always straight.

![Diagram of line g with points P, Q, and arrowhead]

<table>
<thead>
<tr>
<th>Label It</th>
<th>Say It</th>
</tr>
</thead>
<tbody>
<tr>
<td>line g</td>
<td>line g</td>
</tr>
<tr>
<td>\overrightarrow{PQ}</td>
<td>line PQ</td>
</tr>
<tr>
<td>\overrightarrow{QP}</td>
<td>lineQP</td>
</tr>
</tbody>
</table>
1.1. Points, Lines, and Planes

Plane: Infinitely many intersecting lines that extend forever in all directions.
Think of a plane as a huge sheet of paper that goes on forever.

![Image of a plane with points A, B, C, and M]

<table>
<thead>
<tr>
<th>Label It</th>
<th>Say It</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane (M)</td>
<td>Plane (M)</td>
</tr>
<tr>
<td>Plane (ABC)</td>
<td>Plane (ABC)</td>
</tr>
</tbody>
</table>

Table 1.3:

Example 1: What best describes San Diego, California on a globe?
A. point
B. line
C. plane

Solution: A city is usually labeled with a dot, or point, on a globe.

Example 2: What best describes the surface of a movie screen?
A. point
B. line
C. plane

Solution: The surface of a movie screen is most like a plane.

Beyond the Basics
Now we can use point, line, and plane to define new terms.

Space: The set of all points expanding in three dimensions.
Think back to the plane. It goes up and down, and side to side. If we add a third direction, we have space, something three-dimensional.

Collinear: Points that lie on the same line.

![Diagram of collinear points P, Q, R, S, and T]

\(P, Q, R, S, \) and \(T \) are collinear because they are all on line \(w \). If a point \(U \) was above or below line \(w \), it would be non-collinear.

Coplanar: Points and/or lines within the same plane.
Lines h and i and points $A, B, C, D, G,$ and K are **coplanar** in Plane J.

Line \overrightarrow{KF} and point E are **non-coplanar** with Plane J.

Example 3: Use the picture above to answer these questions.

a) List another way to label Plane J.
b) List another way to label line h.
c) Are K and F collinear?
d) Are E, B and F coplanar?

Solution:

a) Plane BDG. Any combination of three coplanar points that are not collinear would be correct.
b) \overrightarrow{AB}. Any combination of two of the letters A, C or B would also work.
c) Yes
d) Yes

Endpoint: A point at the end of a line.

Line Segment: A line with two endpoints. Or, a line that stops at both ends.

Line segments are labeled by their endpoints. Order does not matter.

Ray: A line with one endpoint and extends forever in the other direction.

A ray is labeled by its endpoint and one other point on the line. For rays, order matters. When labeling, put endpoint under the side WITHOUT an arrow.
Table 1.5:

<table>
<thead>
<tr>
<th>Label It</th>
<th>Say It</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overrightarrow{CD})</td>
<td>Ray (CD)</td>
</tr>
<tr>
<td>(\overrightarrow{DC})</td>
<td>Ray (CD)</td>
</tr>
</tbody>
</table>

Intersection: A point or line where lines, planes, segments or rays cross.

Example 4: What best describes a straight road connecting two cities?

A. ray
B. line
C. segment
D. plane

Solution: The straight road connects two cities, which are like endpoints. The best term is segment, or \(C \).

Example 5: Answer the following questions about the picture to the right.

a) Is line \(l \) coplanar with Plane \(V \) or \(W \)?
b) Are \(R \) and \(Q \) collinear?
c) What point is non-coplanar with either plane?
d) List three coplanar points in Plane \(W \).

Solution:

a) No.
b) Yes.
c) \(S \)
d) Any combination of \(P, O, T \) and \(Q \) would work.

Further Beyond This section introduces a few basic postulates.

Postulates: Basic rules of geometry. *We can assume that all postulates are true.*
Theorem: A statement that is proven true using postulates, definitions, and previously proven theorems.

Postulate 1-1: There is exactly one (straight) line through any two points.

Investigation 1-1: Line Investigation

1. Draw two points anywhere on a piece of paper.
2. Use a ruler to connect these two points.
3. How many lines can you draw to go through these two points?

Postulate 1-2: One plane contains any three non-collinear points.

Postulate 1-3: A line with points in a plane is also in that plane.

Postulate 1-4: The intersection of two lines will be one point.

Lines \(l \) and \(m \) intersect at point \(A \).

Postulate 1-5: The intersection of two planes is a line.
1.1. Points, Lines, and Planes

When making geometric drawings, you need to be clear and label all points and lines.

Example 6a: Draw and label the intersection of line \overrightarrow{AB} and ray \overrightarrow{CD} at point C.

Solution: It does not matter where you put A or B on the line, nor the direction that \overrightarrow{CD} points.

![Diagram of Example 6a](image)

Example 6b: Redraw Example 6a, so that it looks different but is still true.

Solution:

![Diagram of Example 6b](image)

Example 7: Describe the picture below using the geometric terms you have learned.

Solution: \overrightarrow{AB} and D are coplanar in Plane \mathcal{P}, while \overrightarrow{BC} and \overrightarrow{AC} intersect at point C which is non-coplanar.

![Diagram of Example 7](image)

Know What? Revisited The octagon has 8 sides. In Latin, “octo” or “octa” means 8, so octagon, literally means “8-sided figure.” An octagon in real-life would be a stop sign.

Review Questions

- Questions 1-5 are similar to Examples 6a and 6b.
• Questions 6-8 are similar to Examples 3 and 5.
• Questions 9-12 are similar to Examples 1, 2, and 4.
• Questions 13-16 are similar to Example 7.
• Questions 17-25 use the definitions and postulates learned in this lesson.

For questions 1-5, draw and label an image to fit the descriptions.

1. \overrightarrow{CD} intersecting \overrightarrow{AB} and Plane P containing \overrightarrow{AB} but not \overrightarrow{CD}.
2. Three collinear points $A, B,$ and C and B is also collinear with points D and E.
3. $\overrightarrow{XY}, \overrightarrow{XZ},$ and \overrightarrow{ZW} such that \overrightarrow{XY} and \overrightarrow{XZ} are coplanar, but \overrightarrow{ZW} is not.
4. Two intersecting planes, P and Q, with \overrightarrow{GH} where G is in plane P and H is in plane Q.
5. Four non-collinear points, $I, J, K,$ and L, with line segments connecting all points to each other.
6. Name this line in five ways.

![Diagram of line segments](image)

7. Name the geometric figure in three different ways.

![Diagram of geometric figure](image)

8. Name the geometric figure below in two different ways.

![Diagram of geometric figure](image)

9. What is the best possible geometric model for a soccer field? Explain your answer.

10. List two examples of where you see rays in real life.

11. What type of geometric object is the intersection of a line and a plane? Draw your answer.

12. What is the difference between a postulate and a theorem?

For 13-16, use geometric notation to explain each picture in as much detail as possible.

13.

![Diagram of geometric notation](image)

14.

![Diagram of geometric notation](image)
For 17-25, determine if the following statements are true or false.

17. Any two points are collinear.
18. Any three points determine a plane.
19. A line is to two rays with a common endpoint.
20. A line segment is infinitely many points between two endpoints.
21. A point takes up space.
22. A line is one-dimensional.
23. Any four points are coplanar.
24. \(\overrightarrow{AB} \) could be read “ray \(AB \)” or “ray \(BA \).”
25. \(\overrightarrow{AB} \) could be read “line \(AB \)” or “line \(BA \).”

Review Queue Answers

1. Examples could be triangles, squares, rectangles, lines, circles, points, pentagons, stop signs (octagons), boxes (prisms), or dice (cubes).
2. A yield sign is a triangle with equal sides.
3.
 a. \(4x - 7 = 29 \)
 \[4x = 36 \]
 \[x = 9 \]
 b. \(-3x + 5 = 17 \)
 \[-3x = 12 \]
 \[x = -4 \]
1.2 Segments and Distance

Learning Objectives

- Use the ruler postulate.
- Use the segment addition postulate.
- Plot line segments on the x – y plane.

Review Queue

1. Draw a line segment with endpoints C and D.
2. How would you label the following figure? List 2 different ways.

3. Draw three collinear points and a fourth that is coplanar.
4. Plot the following points on the x – y plane.
 a. $(3, -3)$
 b. $(-4, 2)$
 c. $(0, -7)$
 d. $(6, 0)$

Know What? The average adult human body can be measured in “heads.” For example, the average human is 7-8 heads tall. When doing this, each person uses their own head to measure their own body. Other measurements are in the picture to the right.

See if you can find the following measurements:

- The length from the wrist to the elbow
- The length from the top of the neck to the hip
- The width of each shoulder
Measuring Distances

Distance: The length between two points.

Measure: To determine how far apart two geometric objects are.

The most common way to measure distance is with a ruler. In this text we will use inches and centimeters.

Example 1: Determine how long the line segment is, in inches. Round to the nearest quarter-inch.

Solution: To measure this line segment, it is very important to line up the “0” with the one of the endpoints. DO NOT USE THE EDGE OF THE RULER.

From this ruler, it looks like the segment is 4.75 inches (in) long.

Inch-rulers are usually divided up by eight-inch (or 0.125 in) segments. Centimeter rulers are divided up by tenth-centimeter (or 0.1 cm) segments.
Example 2: Determine the measurement between the two points to the nearest tenth of a centimeter.

Solution: Even though there is no line segment between the two points, we can still measure the distance using a ruler.

It looks like the two points are 6 centimeters (cm) apart.

NOTE: We label a line segment, \(\overline{AB} \) and the distance between \(A \) and \(B \) is shown below. \(m \) means measure. The two can be used interchangeably.

Table 1.6:

<table>
<thead>
<tr>
<th>Label It</th>
<th>Say It</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB)</td>
<td>The distance between (A) and (B)</td>
</tr>
<tr>
<td>(m\overline{AB})</td>
<td>The measure of (\overline{AB})</td>
</tr>
</tbody>
</table>

Ruler Postulate

Ruler Postulate: The distance between two points is the absolute value of the difference between the numbers shown on the ruler.

The ruler postulate implies that you do not need to start measuring at “0”, as long as you subtract the first number from the second. “Absolute value” is used because distance is always positive.

Example 3: What is the distance marked on the ruler below? The ruler is in centimeters.
1.2. Segments and Distance

Solution: Subtract one endpoint from the other. The line segment spans from 3 cm to 8 cm. $|8 - 3| = |5| = 5$
The line segment is 5 cm long. Notice that you also could have done $|3 - 8| = |-5| = 5$.

Example 4: Draw CD, such that $CD = 3.825$ in.
Solution: To draw a line segment, start at “0” and draw a segment to 3.825 in.

Example 5: Make a sketch of OP, where Q is between O and P.
Solution: Draw OP first, then place Q on the segment.

Example 6: In the picture from Example 5, if $OP = 17$ and $QP = 6$, what is OQ?
Solution: Use the Segment Additional Postulate.

$$OQ + QP = OP$$
$$OQ + 6 = 17$$
$$OQ = 17 - 6$$
$$OQ = 11$$

Example 7: Make a sketch of: S is between T and V. R is between S and T. $TR = 6$, $RV = 23$, and $TR = SV$.
Solution: Interpret the first sentence first: S is between T and V.

Segment Addition Postulate

First, in the picture below, B is between A and C. As long as B is anywhere on the segment, it can be considered to be between the endpoints.

Segment Addition Postulate: If A, B, and C are collinear and B is between A and C, then $AB + BC = AC$.
For example, if $AB = 5$ cm and $BC = 12$ cm, then AC must equal $5 + 12$ or 17 cm (in the picture above).

Example 5: Make a sketch of OP, where Q is between O and P.
Solution: Draw OP first, then place Q on the segment.

Example 6: In the picture from Example 5, if $OP = 17$ and $QP = 6$, what is OQ?
Solution: Use the Segment Additional Postulate.

$$OQ + QP = OP$$
$$OQ + 6 = 17$$
$$OQ = 17 - 6$$
$$OQ = 11$$

Example 7: Make a sketch of: S is between T and V. R is between S and T. $TR = 6$, $RV = 23$, and $TR = SV$.
Solution: Interpret the first sentence first: S is between T and V.
Then add in what we know about \(R \): It is between \(S \) and \(T \). Put markings for \(TR = SV \).

Example 8: Find \(SV, TS, RS \) and \(TV \) from Example 7.

Solution:

For \(SV \): It is equal to \(TR \), so \(SV = 6 \) cm.

<table>
<thead>
<tr>
<th>For (RS) :</th>
<th>(RV = RS + SV)</th>
<th>For (TS) :</th>
<th>(TS = TR + RS)</th>
<th>For (TV) :</th>
<th>(TV = TR + RS + SV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(23 = RS + 6)</td>
<td>(TS = 6 + 17)</td>
<td>(TS = 23) cm</td>
<td>(TV = 6 + 17 + 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RS = 17) cm</td>
<td>(TS = 23) cm</td>
<td>(TV = 29) cm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 9: *Algebra Connection* For \(HK \), suppose that \(J \) is between \(H \) and \(K \). If \(HJ = 2x + 4 \), \(JK = 3x + 3 \), and \(KH = 22 \), find \(x \).

Solution: Use the Segment Addition Postulate.

\[
HJ + JK = KH \\
(2x + 4) + (3x + 3) = 22 \\
5x + 7 = 22 \\
5x = 15 \\
x = 3
\]

Distances on a Grid

You can now find the distances between points in the \(x - y \) plane if the lines are horizontal or vertical.

If the line is vertical, find the change in the \(y \)-coordinates.

If the line is horizontal, find the change in the \(x \)-coordinates.

Example 10: What is the distance between the two points shown below?
1.2. Segments and Distance

Solution: Because this line is vertical, look at the change in the y-coordinates.

\[|9 - 3| = |6| = 6\]

The distance between the two points is 6 units.

Example 11: What is the distance between the two points shown below?

Solution: Because this line is horizontal, look at the change in the x-coordinates.

\[|(-4) - 3| = |-7| = 7\]

The distance between the two points is 7 units.

Know What? Revisited The length from the wrist to the elbow is one head, the length from the top of the neck to the hip is two heads, and the width of each shoulder one head width.

Review Questions

- Questions 1-8 are similar to Examples 1 and 2.
- Questions 9-12 are similar to Example 3.
For 1-4, find the length of each line segment in inches. Round to the nearest $\frac{1}{8}$ of an inch.

![Image of line segments]

For 5-8, find the distance between each pair of points in centimeters. Round to the nearest tenth.

![Image of points and distances]

For 9-12, use the ruler in each picture to determine the length of the line segment.

![Image of ruler]
1.2. Segments and Distance

13. Make a sketch of \overline{BT}, with A between B and T.
14. If O is in the middle of \overline{LT}, where exactly is it located? If $LT = 16$ cm, what is LO and OT?
15. For three collinear points, A between T and Q.
 a. Draw a sketch.
 b. Write the Segment Addition Postulate.
 c. If $AT = 10$ in and $AQ = 5$ in, what is TQ?

16. For three collinear points, M between H and A.
 a. Draw a sketch.
 b. Write the Segment Addition Postulate.
 c. If $HM = 18$ cm and $HA = 29$ cm, what is AM?

17. For three collinear points, I between M and T.
 a. Draw a sketch.
 b. Write the Segment Addition Postulate.
 c. If $IT = 6$ cm and $MT = 25$ cm, what is AM?

18. Make a sketch that matches the description: B is between A and D. C is between B and D. $AB = 7$ cm, $AC = 15$ cm, and $AD = 32$ cm. Find BC, BD, and CD.
19. Make a sketch that matches the description: E is between F and G. H is between F and E. $FH = 4$ in, $EG = 9$ in, and $FH = HE$. Find FE, HG, and FG.

For 20 and 21, Suppose J is between H and K. Use the Segment Addition Postulate to solve for x. Then find the length of each segment.

20. $HJ = 4x + 9$, $JK = 3x + 3$, $KH = 33$
21. $HJ = 5x - 3$, $JK = 8x - 9$, $KH = 131$

For 23-26, determine the vertical or horizontal distance between the two points.
23.

24.

25.
Review Queue Answers

2. line \(l \), \(MN \)
1.3 Angles and Measurement

Learning Objectives

- Classify angles.
- Apply the Protractor Postulate and the Angle Addition Postulate.

Review Queue

1. Label the following geometric figure. What is it called?

 ![Image of line AB]

2. Find \(a, XY\) and \(YZ\).

 ![Image of line segment with unspecified points]

3. \(B\) is between \(A\) and \(C\) on \(\overline{AC}\). If \(AB = 4\) and \(BC = 9\), what is \(AC\)?

Know What? Back to the building blocks. Every block has its own dimensions, angles and measurements. Using a protractor, find the measure of the three outlined angles in the “castle” below.

![Image of a castle]

Two Rays = One Angle

In #1 above, the figure was a ray. It is labeled \(\overrightarrow{AB}\), with the arrow over the point that is NOT the endpoint. When two rays have the same endpoint, an angle is created.
1.3. Angles and Measurement

Angle: When two rays have the same endpoint.

Vertex: The common endpoint of the two rays that form an angle.

Sides: The two rays that form an angle.

![Diagram of an angle with labeled parts]

Table 1.7:

<table>
<thead>
<tr>
<th>Label It</th>
<th>Say It</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\angle ABC)</td>
<td>Angle (ABC)</td>
</tr>
<tr>
<td>(\angle CBA)</td>
<td>Angle (CBA)</td>
</tr>
</tbody>
</table>

The vertex is \(B \) and the sides are \(\overrightarrow{BA} \) and \(\overrightarrow{BC} \). Always use three letters to name an angle, \(\angle \) SIDE-VERTEX-SIDE.

Example 1: How many angles are in the picture below? Label each one.

![Multiple angles labeled]

Solution: There are three angles with vertex \(U \). It might be easier to see them all if we separate them.

![Separated angles]

So, the three angles can be labeled, \(\angle XUY \) (or \(\angle YUX \)), \(\angle YUZ \) (or \(\angle ZUY \)), and \(\angle XUZ \) (or \(\angle ZUX \)).

Protractor Postulate

We measure a line segment’s *length* with a ruler. Angles are measured with something called a *protractor*. A protractor is a measuring device that measures how “open” an angle is. Angles are measured in degrees, and labeled with a \(^\circ \) symbol.
There are two sets of measurements, one starting on the left and the other on the right side of the protractor. Both go around from 0° to 180°. When measuring angles, always line up one side with 0°, and see where the other side hits the protractor. The vertex lines up in the middle of the bottom line.

Example 2: Measure the three angles from Example 1, using a protractor.

Solution: Just like in Example 1, it might be easier to measure these three angles if we separate them.
With measurement, we put an m in front of the \angle sign to indicate measure. So, $m\angle XUY = 84^\circ$, $m\angle YUZ = 42^\circ$ and $m\angle XUZ = 126^\circ$.

Just like the Ruler Postulate for line segments, there is a Protractor Postulate for angles.

Protractor Postulate: For every angle there is a number between 0° and 180° that is the measure of the angle. The angle’s measure is the difference of the degrees where the sides of the angle intersect the protractor. *For now, angles are always positive.*

In other words, you do not have to start measuring an angle at 0°, as long as you subtract one measurement from the other.

Example 3: What is the measure of the angle shown below?

![Diagram of an angle](image)

Solution: This angle is lined up with 0°, so where the second side intersects the protractor is the angle measure, which is 50°.

Example 4: What is the measure of the angle shown below?

![Diagram of an angle](image)

Solution: This angle is not lined up with 0°, so use subtraction to find its measure. It does not matter which scale you use.

Inner scale: $140^\circ - 15^\circ = 125^\circ$

Outer scale: $165^\circ - 40^\circ = 125^\circ$

Example 5: Use a protractor to measure $\angle RST$ below.

![Diagram of an angle](image)

Solution: Lining up one side with 0° on the protractor, the other side hits 100°.
Classifying Angles

Angles can be grouped into four different categories.

Straight Angle: An angle that measures exactly 180°.

![Straight Angle Diagram](image)

Right Angle: An angle that measures exactly 90°.

![Right Angle Diagram](image)

This half-square marks right, or 90°, angles.

Acute Angles: Angles that measure between 0° and 90°.

![Acute Angles Diagram](image)

Obtuse Angles: Angles that measure between 90° and 180°.

![Obtuse Angles Diagram](image)

Perpendicular: When two lines intersect to form four right angles.

![Perpendicular Diagram](image)

Even though all four angles are 90°, only one needs to be marked with the half-square.

The symbol for perpendicular is \(\perp \).
Table 1.8:

<table>
<thead>
<tr>
<th>Label It</th>
<th>Say It</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l \perp m)</td>
<td>Line (l) is perpendicular to line (m).</td>
</tr>
<tr>
<td>(\overrightarrow{AC} \perp \overrightarrow{DE})</td>
<td>Line (AC) is perpendicular to line (DE).</td>
</tr>
</tbody>
</table>

Example 6: Name the angle and determine what type of angle it is.

![Diagram of angles](image)

Solution: The vertex is \(U \). So, the angle can be \(\angle TUV \) or \(\angle VUT \). To determine what type of angle it is, compare it to a right angle.

Because it opens wider than a right angle, and less than a straight angle it is **obtuse**.

Example 7: What type of angle is 84°? What about 165°?

Solution: 84° is less than 90°, so it is **acute**. 165° is greater than 90°, but less than 180°, so it is **obtuse**.

Drawing an Angle

Investigation 1-2: Drawing a 50° Angle with a Protractor

1. Start by drawing a horizontal line across the page, 2 in long.

![Horizontal line](image)

2. Place an endpoint at the left side of your line.

3. Place the protractor on this point, such that the bottom line of the protractor is on the line and the endpoint is at the center. Mark 50° on the appropriate scale.

![Protractor](image)

4. Remove the protractor and connect the vertex and the 50° mark.
This process can be used to draw any angle between 0° and 180°. See http://www.mathsisfun.com/geometry/protractor-using.html for an animation of this investigation.

Example 8: Draw a 135° angle.

Solution: Following the steps from above, your angle should look like this:

Now that we know how to draw an angle, we can also copy that angle with a compass and a ruler. Anytime we use a compass and ruler to draw geometric figures, it is called a **construction**.

Compass: A tool used to draw circles and arcs.

Investigation 1-3: Copying an Angle with a Compass and Ruler

1. We are going to copy the 50° angle from Investigation 1-2. First, draw a straight line, 2 inches long, and place an endpoint at one end.

2. With the point (non-pencil side) of the compass on the vertex, draw an arc that passes through both sides of the angle. Repeat this arc with the line we drew in #1.
3. Move the point of the compass to the horizontal side of the angle we are copying. Place the point where the arc intersects this side. Open (or close) the “mouth” of the compass so that you can draw an arc that intersects the other side and the arc drawn in #2. Repeat this on the line we drew in #1.

4. Draw a line from the new vertex to the arc intersections.

To watch an animation of this construction, see http://www.mathsisfun.com/geometry/construct-anglesame.html

Marking Angles and Segments in a Diagram

With all these segments and angles, we need to have different ways to label equal angles and segments.

Angle Markings

Segment Markings

Example 9: Write all equal angle and segment statements.
Solution: $\overline{AD} \perp \overline{FC}$

$$m\angle ADB = m\angle BDC = m\angle FDE = 45^\circ$$
$$AD = DE$$
$$FD = DB = DC$$
$$m\angle ADF = m\angle ADC = 90^\circ$$

Angle Addition Postulate

Like the Segment Addition Postulate, there is an Angle Addition Postulate.

Angle Addition Postulate: If B is on the interior of $\angle ADC$, then

$$m\angle ADC = m\angle ADB + m\angle BDC$$

Example 10: What is $m\angle QRT$ in the diagram below?
1.3. Angles and Measurement

Solution: Using the Angle Addition Postulate, \(m\angle QRT = 15^\circ + 30^\circ = 45^\circ \).

Example 11: What is \(m\angle LMN \) if \(m\angle LMO = 85^\circ \) and \(m\angle NMO = 53^\circ \)?

\[
\begin{align*}
\text{Solution:} \quad m\angle LMO &= m\angle NMO + m\angle LMN, \text{ so } 85^\circ = 53^\circ + m\angle LMN. \\
m\angle LMN &= 32^\circ.
\end{align*}
\]

Example 12: \textbf{Algebra Connection} If \(m\angle ABD = 100^\circ \), find \(x \).

\[
\begin{align*}
\text{Solution:} \quad m\angle ABD &= m\angle ABC + m\angle CBD. \text{ Write an equation.} \\
100^\circ &= (4x + 2)^\circ + (3x - 7)^\circ \\
100^\circ &= 7x^\circ - 5^\circ \\
105^\circ &= 7x^\circ \\
15^\circ &= x
\end{align*}
\]

\textbf{Know What? Revisited} Using a protractor, the measurement marked in the red triangle is 90°, the measurement in the green triangle is 45° and the measurement in the blue square is 90°.

\section*{Review Questions}

- Questions 1-10 use the definitions, postulates and theorems from this section.
- Questions 11-16 are similar to Investigation 1-2 and Examples 7 and 8.
- Questions 17 and 18 are similar to Investigation 1-3.
- Questions 19-22 are similar to Examples 2-5.
- Question 23 is similar to Example 9.
- Questions 24-28 are similar to Examples 10 and 11.
- Questions 29 and 30 are similar to Example 12.

For questions 1-10, determine if the statement is true or false.

1. Two angles always add up to be greater than 90°.
2. 180° is an obtuse angle.
3. 180° is a straight angle.
4. Two perpendicular lines intersect to form four right angles.
5. A construction uses a protractor and a ruler.
6. For an angle $\angle ABC$, C is the vertex.
7. For an angle $\angle ABC$, \overline{AB} and \overline{BC} are the sides.
8. The m in front of $m \angle ABC$ means measure.
9. Angles are always measured in degrees.
10. The Angle Addition Postulate says that an angle is equal to the sum of the smaller angles around it.

For 11-16, draw the angle with the given degree, using a protractor and a ruler. Also, state what type of angle it is.

11. 55°
12. 92°
13. 178°
14. 5°
15. 120°
16. 73°

17. **Construction** Copy the angle you made from #12, using a compass and a ruler.
18. **Construction** Copy the angle you made from #16, using a compass and a ruler.

For 19-22, use a protractor to determine the measure of each angle.

23. Interpret the picture to the right. Write down all equal angles, segments and if any lines are perpendicular.
In Exercises 24-29, use the following information: \(Q \) is in the interior of \(\angle ROS \). \(S \) is in the interior of \(\angle QOP \). \(P \) is in the interior of \(\angle SOT \). \(S \) is in the interior of \(\angle ROT \) and \(m\angle ROT = 160^\circ \), \(m\angle SOT = 100^\circ \), and \(m\angle ROQ = m\angle QOS = m\angle POT \).

24. Make a sketch.
25. Find \(m\angle QOP \)
26. Find \(m\angle QOT \)
27. Find \(m\angle ROQ \)
28. Find \(m\angle SOP \)

Algebra Connection Solve for \(x \).

29. \(m\angle ADC = 56^\circ \)

\[
\frac{(x+7)^\circ}{(2x+19)^\circ} = \frac{56^\circ}{18^\circ}
\]

30. \(m\angle ADC = 130^\circ \)

\[
\frac{(4x - 23)^\circ}{(4x + 5)^\circ} = \frac{130^\circ}{95^\circ}
\]

Review Queue Answers

1. \(→AB \), a ray
2. \(XY = 3, YZ = 38 \)
 \[a - 6 + 3a + 11 = 41 \]
 \[4a + 5 = 41 \]
 \[4a = 36 \]
 \[a = 9 \]
3. Use the Segment Addition Postulate, \(AC = 13 \).
1.4 Midpoints and Bisectors

Learning Objectives

- Identify the midpoint of line segments.
- Identify the bisector of a line segment.
- Understand and use the Angle Bisector Postulate.

Review Queue

1. $m\angle SOP = 38^\circ$, find $m\angle POT$ and $m\angle ROT$.

2. Find the slope between the two numbers.
 a. (-4, 1) and (-1, 7)
 b. (5, -6) and (-3, -4)

3. Find the average of these numbers: 23, 30, 18, 27, and 32.

Know What?

The building to the right is the Transamerica Building in San Francisco. This building was completed in 1972 and, at that time was one of the tallest buildings in the world. In order to make this building as tall as it is and still abide by the building codes, the designer used this pyramid shape.

It is very important in designing buildings that the angles and parts of the building are equal. What components of this building look equal? Analyze angles, windows, and the sides of the building.
1.4. Midpoints and Bisectors

Congruence

You could argue that another word for *equal* is *congruent*. But, the two are a little different.

Congruent: When two geometric figures have the same shape and size.

<table>
<thead>
<tr>
<th>Label It</th>
<th>Say It</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AB \cong BA$</td>
<td>AB is congruent to BA</td>
</tr>
</tbody>
</table>

Table 1.10:

<table>
<thead>
<tr>
<th>Equal</th>
<th>Congruent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$=$</td>
<td>\cong</td>
</tr>
<tr>
<td>used with measurement</td>
<td>used with figures</td>
</tr>
<tr>
<td>$m\overline{AB} = AB = 5\text{cm}$</td>
<td>$\overline{AB} \cong \overline{BA}$</td>
</tr>
<tr>
<td>$m\angle ABC = 60^\circ$</td>
<td>$\angle ABC \cong \angle CBA$</td>
</tr>
</tbody>
</table>

If two segments or angles are congruent, then they are also equal.

Midpoints

Midpoint: A point on a line segment that divides it into two congruent segments.

Because $AB = BC$, B is the midpoint of \overline{AC}.

Midpoint Postulate: Any line segment will have exactly one midpoint.

This postulate is referring to the *midpoint*, not the lines that pass through the midpoint.

There are infinitely many lines that pass through the midpoint.

Example 1: Is M a midpoint of \overline{AB}?
Solution: No, it is not $MB = 16$ and $AM = 34 - 16 = 18$. AM must equal MB in order for M to be the midpoint of AB.

Midpoint Formula

When points are plotted in the coordinate plane, we can use a formula to find the midpoint between them. Here are two points, (-5, 6) and (3, 4).

It follows that the midpoint should be halfway between the points on the line. Just by looking, it seems like the midpoint is (-1, 4).

Midpoint Formula: For two points, (x_1, y_1) and (x_2, y_2), the midpoint is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)$.

Let’s use the formula to make sure (-1, 4) is the midpoint between (-5, 6) and (3, 2).

$$\left(\frac{-5 + 3}{2}, \frac{6 + 2}{2} \right) = \left(\frac{-2}{2}, \frac{8}{2} \right) = (-1, 4)$$

Always use this formula to determine the midpoint.

Example 2: Find the midpoint between (9, -2) and (-5, 14).

Solution: Plug the points into the formula.

$$\left(\frac{9 + (-5)}{2}, \frac{-2 + 14}{2} \right) = \left(\frac{4}{2}, \frac{12}{2} \right) = (2, 6)$$

Example 3: If $M(3, -1)$ is the midpoint of AB and $B(7, -6)$, find A.

Solution: Plug in what you know into the midpoint formula.
1.4. Midpoints and Bisectors

Segment Bisectors

Segment Bisector: A bisector cuts a line segment into two congruent parts and passes through the midpoint.

Example 4: Use a ruler to draw a bisector of the segment.

Solution: First, find the midpoint. Measure the line segment. It is 4 cm long. To find the midpoint, divide 4 cm by 2 because we want 2 equal pieces. Measure 2 cm from one endpoint and draw the midpoint.

A specific type of segment bisector is called a perpendicular bisector.

Perpendicular Bisector: A line, ray or segment that passes through the midpoint of another segment and intersects the segment at a right angle.

Perpendicular Bisector Postulate: For every line segment, there is one perpendicular bisector.

Example 5: Which line is the perpendicular bisector of \overline{MN}?
Solution: The perpendicular bisector must bisect MN and be perpendicular to it. Only \overrightarrow{OQ} fits this description. \overrightarrow{SR} is a bisector, but is not perpendicular.

Example 6: *Algebra Connection* Find x and y.

\[
\begin{align*}
3x - 6 & = 21 \\
3x & = 27 \\
x & = 9 \\
\end{align*}
\]

\[
\begin{align*}
(4y - 2)^\circ & = 90^\circ \\
4y & = 92^\circ \\
y & = 23^\circ \\
\end{align*}
\]

Investigation 1-4: Constructing a Perpendicular Bisector

1. Draw a line that is 6 cm long, halfway down your page.

2. Place the pointer of the compass at an endpoint. Open the compass to be greater than half of the segment. Make arc marks above and below the segment. Repeat on the other endpoint. Make sure the arc marks intersect.

3. Use your straightedge to draw a line connecting the arc intersections.
1.4. Midpoints and Bisectors

This constructed line bisects the line you drew in #1 and intersects it at 90°. To see an animation of this investigation, go to http://www.mathsisfun.com/geometry/construct-linebisect.html.

Congruent Angles

Example 7: Algebra Connection What is the measure of each angle?

![Diagram of angles](image)

Solution: From the picture, we see that the angles are equal.

Set the angles equal to each other and solve.

\[
(5x + 7)° = (3x + 23)°
\]

\[
2x° = 16°
\]

\[
x = 8°
\]

To find the measure of \(\angle ABC \), plug in \(x = 8° \) to \((5x + 7)° \rightarrow (5(8) + 7)° = (40 + 7)° = 47°\). Because \(m\angle ABC = m\angle XYZ \), \(m\angle XYZ = 47° \) too.

Angle Bisectors

Angle Bisector: A ray that divides an angle into two congruent angles, each having a measure exactly half of the original angle.

![Diagram of angle bisector](image)

\(BD \) is the angle bisector of \(\angle ABC \)
\[\angle ABD \cong \angle DBC \]
\[m\angle ABD = \frac{1}{2} m\angle ABC \]

Angle Bisector Postulate: Every angle has exactly one angle bisector.

Example 8: Let’s take a look at Review Queue #1 again. Is \(\overline{OP} \) the angle bisector of \(\angle SOT \)?

![Diagram of an angle with markings for bisector]

Solution: Yes, \(\overline{OP} \) is the angle bisector of \(\angle SOT \) from the markings in the picture.

Investigation 1-5: Constructing an Angle Bisector

1. Draw an angle on your paper. Make sure one side is horizontal.

2. Place the pointer on the vertex. Draw an arc that intersects both sides.

3. Move the pointer to the arc intersection with the horizontal side. Make a second arc mark on the interior of the angle. Repeat on the other side. Make sure they intersect.
4. Connect the arc intersections from #3 with the vertex of the angle.

To see an animation of this construction, view http://www.mathsisfun.com/geometry/construct-anglebisect.html.

Know What? Revisited The image to the right is an outline of the Transamerica Building from earlier in the lesson. From this outline, we can see the following parts are congruent:

- $\overline{TR} \cong \overline{TC}$
- $\angle TCR \cong \angle TRC$
- $\overline{RS} \cong \overline{CM}$
- $\angle CIE \cong \angle RAN$
- $\overline{CI} \cong \overline{RA}$ and $\angle TMS \cong \angle TSM$
- $\overline{AN} \cong \overline{IE}$
- $\angle IEC \cong \angle ANR$
- $\overline{TS} \cong \overline{TM}$
- $\angle TCI \cong \angle TRA$

All the four triangular sides of the building are congruent to each other as well.

Review Questions

- Questions 1-18 are similar to Examples 1, 4, 5 and 8.
- Questions 19-22 are similar to Examples 6 and 7.
- Question 23 is similar to Investigation 1-5.
- Question 24 is similar to Investigation 1-4.
- Questions 25-28 are similar to Example 2.
- Question 29 and 30 are similar to Example 3.

1. Copy the figure below and label it with the following information:
\[\angle A \cong \angle C \]
\[\angle B \cong \angle D \]
\[AB \cong CD \]
\[AD \cong BC \]

\(H \) is the midpoint of \(AE \) and \(DG \), \(B \) is the midpoint of \(AC \), \(GD \) is the perpendicular bisector of \(FA \) and \(EC \) \(\cong FE \) and \(FA \cong EC \)

Find:

2. \(AB \)
3. \(GA \)
4. \(ED \)
5. \(HE \)
6. \(m \angle HDC \)
7. \(FA \)
8. \(GD \)
9. \(m \angle FED \)
10. How many copies of triangle \(AHB \) can fit inside rectangle \(FECA \) without overlapping?

For 11-18, use the following picture to answer the questions.

11. What is the angle bisector of \(\angle TPR \)?
12. P is the midpoint of what two segments?

13. What is $m\angle QPR$?

14. What is $m\angle TPS$?

15. How does VS relate to QT?

16. How does QT relate to VS?

17. What is $m\angle QPV$?

18. Is PU a bisector? If so, of what?

Algebra Connection For 19-22, use algebra to determine the value of variable in each problem.

19. \angle with 150°.

20. \angle with 62°.

21. \angle with $11x+3$.

22. \angle with $(7d-1)^\circ$.

23. **Construction** Using your protractor, draw an angle that is 110°. Then, use your compass to construct the angle bisector. What is the measure of each angle?

24. **Construction** Using your ruler, draw a line segment that is 7 cm long. Then use your compass to construct the perpendicular bisector. What is the measure of each segment?

For questions 25-28, find the midpoint between each pair of points.

25. $(-2, -3)$ and $(8, -7)$

26. $(9, -1)$ and $(-6, -11)$

27. $(-4, 10)$ and $(14, 0)$

28. $(0, -5)$ and $(-9, 9)$

Given the midpoint (M) and either endpoint of AB, find the other endpoint.

29. $A(-1, 2)$ and $M(3, 6)$

30. $B(-10, -7)$ and $M(-2, 1)$

Review Queue Answers

1. $m\angle POT = 38^\circ$, $m\angle ROT = 57^\circ + 38^\circ + 38^\circ = 133^\circ$
a. \(\frac{7-1}{4+4} = \frac{6}{8} = \frac{3}{4} = 2 \)

b. \(\frac{-4+6}{-3-5} = \frac{2}{-8} = -\frac{1}{4} \)

2. \(\frac{23+30+18+27+32}{5} = \frac{130}{5} = 26 \)
Learning Objectives

- Recognize complementary angles, supplementary angles, linear pairs, and vertical angles.
- Apply the Linear Pair Postulate and the Vertical Angles Theorem.

Review Queue

1. Find x.
2. Find y.
3. Find z.

Know What? A compass (as seen to the right) is used to determine the direction a person is traveling. The angles between each direction are very important because they enable someone to be more specific with their direction. A direction of 45° NW, would be straight out along that northwest line.

What headings have the same angle measure? What is the angle measure between each compass line?
Complementary Angles

Complementary: Two angles that add up to 90°.

Complementary angles do not have to:

- congruent
- next to each other

Example 1: The two angles below are complementary. $m\angle GHI = x$. What is x?

![Diagram](image1)

Solution: Because the two angles are complementary, they add up to 90°. Make an equation.

\[
x + 34^\circ = 90^\circ
\]
\[
x = 56^\circ
\]

Example 2: The two angles below are complementary. Find the measure of each angle.

![Diagram](image2)

Solution: The two angles add up to 90°. Make an equation.

\[
8r + 9^\circ + 7r + 6^\circ = 90^\circ
\]
\[
15r + 15^\circ = 90^\circ
\]
\[
15r = 75^\circ
\]
\[
r = 5^\circ
\]

However, you need to find each angle. Plug r back into each expression.

\[
m\angle GHI = 8(5^\circ) + 9^\circ = 49^\circ
\]
\[
m\angle JKL = 7(5^\circ) + 6^\circ = 41^\circ
\]
Supplementary Angles

Supplementary: Two angles that add up to 180°.

Supplementary angles do not have to be:

- congruent
- next to each other

Example 3: The two angles below are supplementary. If $m\angle MNO = 78^\circ$ what is $m\angle PQR$?

Solution: Set up an equation. However, instead of equaling 90°, now it is 180°.

\[
78^\circ + m\angle PQR = 180^\circ \\
m\angle PQR = 102^\circ
\]

Example 4: What is the measure of two congruent, supplementary angles?

Solution: Supplementary angles add up to 180°. Congruent angles have the same measure. So, $180^\circ \div 2 = 90^\circ$, which means two congruent, supplementary angles are right angles, or 90°.

Linear Pairs

Adjacent Angles: Two angles that have the same vertex, share a side, and do not overlap.

$\angle PSQ$ and $\angle QSR$ are adjacent.

$\angle PQR$ and $\angle PQS$ are NOT adjacent because they overlap.

Linear Pair: Two angles that are adjacent and the non-common sides form a straight line.
∠PSQ and ∠QSR are a linear pair.

Linear Pair Postulate: If two angles are a linear pair, then they are supplementary.

Example 5: Algebra Connection What is the measure of each angle?

![Diagram of two angles forming a linear pair](image)

Solution: These two angles are a linear pair, so they add up to 180°.

\[
(7q - 46)° + (3q + 6)° = 180°
\]

\[
10q - 40° = 180°
\]

\[
10q = 220°
\]

\[
q = 22°
\]

Plug in \(q \) to get the measure of each angle. \(m\angle ABD = 7(22°) - 46° = 108° \)

\(m\angle DBC = 180° - 108° = 72° \)

Example 6: Are ∠CDA and ∠DAB a linear pair? Are they supplementary?

Solution: The two angles are not a linear pair because they do not have the same vertex. They are supplementary, \(120° + 60° = 180° \).

![Diagram of a parallelogram](image)

Vertical Angles

Vertical Angles: Two non-adjacent angles formed by intersecting lines.
1.5. Angle Pairs

\[\angle 1 \] and \[\angle 3 \] are vertical angles

\[\angle 2 \] and \[\angle 4 \] are vertical angles

These angles are labeled with numbers. You can tell that these are labels because they do not have a degree symbol.

Investigation 1-6: Vertical Angle Relationships

1. Draw two intersecting lines on your paper. Label the four angles created \[\angle 1 \], \[\angle 2 \], \[\angle 3 \], and \[\angle 4 \], just like the picture above.
2. Use your protractor to find \(m\angle 1 \).
3. What is the angle relationship between \[\angle 1 \] and \[\angle 2 \] called? Find \(m\angle 2 \).
4. What is the angle relationship between \[\angle 1 \] and \[\angle 4 \] called? Find \(m\angle 4 \).
5. What is the angle relationship between \[\angle 2 \] and \[\angle 3 \] called? Find \(m\angle 3 \).
6. Are any angles congruent? If so, write them down.

From this investigation, you should find that \[\angle 1 \cong \angle 3 \] and \[\angle 2 \cong \angle 4 \].

Vertical Angles Theorem: If two angles are vertical angles, then they are congruent.

We can prove the Vertical Angles Theorem using the same process we used in the investigation. We will not use any specific values for the angles.

From the picture above:

\[\angle 1 \text{ and } \angle 2 \text{ are a linear pair } \rightarrow m\angle 1 + m\angle 2 = 180^\circ \quad \text{Equation 1} \]
\[\angle 2 \text{ and } \angle 3 \text{ are a linear pair } \rightarrow m\angle 2 + m\angle 3 = 180^\circ \quad \text{Equation 2} \]
\[\angle 3 \text{ and } \angle 4 \text{ are a linear pair } \rightarrow m\angle 3 + m\angle 4 = 180^\circ \quad \text{Equation 3} \]

All of the equations \(= 180^\circ \), so Equation 1 = Equation 2 and Equation 2 = Equation 3.

\[m\angle 1 + m\angle 2 = m\angle 2 + m\angle 3 \quad \text{and} \quad m\angle 2 + m\angle 3 = m\angle 3 + m\angle 4 \]

Cancel out the like terms

\[m\angle 1 = m\angle 3 \quad \text{and} \quad m\angle 2 = m\angle 4 \]

Recall that anytime the measures of two angles are equal, the angles are also congruent. So, \(\angle 1 \cong \angle 3 \) and \(\angle 2 \cong \angle 4 \) too.

Example 7: Find \(m\angle 1 \) and \(m\angle 2 \).
Solution: \(\angle 1 \) is vertical angles with 18°, so \(m \angle 1 = 18° \).

\(\angle 2 \) is a linear pair with \(\angle 1 \) or 18°, so \(18° + m \angle 2 = 180° \).

\(m \angle 2 = 180° − 18° = 162° \).

Know What? Revisited The compass has several vertical angles and all of the smaller angles are 22.5°, 180° ÷ 8.
Directions that are opposite each other have the same angle measure, but of course, a different direction. All of the green directions have the same angle measure, 22.5°, and the purple have the same angle measure, 45°. N, S, E and W all have different measures, even though they are all 90° apart.

Review Questions

- Questions 1 and 2 are similar to Examples 1, 2, and 3.
- Questions 3-8 are similar to Examples 3, 4, 6 and 7.
- Questions 9-16 use the definitions, postulates and theorems from this section.
- Questions 17-25 are similar to Example 5.

1. Find the measure of an angle that is complementary to \(\angle ABC \) if \(m \angle ABC \) is
 a. 45°
 b. 82°
 c. 19°
 d. \(z \)°

2. Find the measure of an angle that is supplementary to \(\angle ABC \) if \(m \angle ABC \) is
 a. 45°
 b. 118°
 c. 32°
 d. \(x \)°
1. Use the diagram below for exercises 3-7. Note that $\overrightarrow{NK} \perp \overrightarrow{IL}$.

3. Name one pair of vertical angles.
4. Name one linear pair of angles.
5. Name two complementary angles.
6. Name two supplementary angles.

7. What is:
 a. $m\angle INL$
 b. $m\angle LNK$

8. If $m\angle INJ = 63^\circ$, find:
 a. $m\angle JNL$
 b. $m\angle KNJ$
 c. $m\angle MNL$
 d. $m\angle MNI$

For 9-16, determine if the statement is true or false.

9. Vertical angles are congruent.
10. Linear pairs are congruent.
11. Complementary angles add up to 180°.
12. Supplementary angles add up to 180°.
13. Adjacent angles share a vertex.
15. Complementary angles are always 45°.
16. Vertical angles have the same vertex.

For 17-23, find the value of x or y.

17. $(x+16)^\circ$, $(4x-5)^\circ$
18. $(4x+20)^\circ$, $(x-10)^\circ$
19. $(9y+7)^\circ$, $(2y+98)^\circ$
For 24-25, use the figure below:

24. Find \(x \).
25. Find \(y \).

Review Queue Answers

1. \(x + 26 = 3x - 8 \)
 \[34 = 2x \]
 \[17 = x \]
2. \((7y + 6)^\circ = 90^\circ \)
 \[7y = 84^\circ \]
 \[y = 12^\circ \]
3. \(z + 15 = 5z + 9 \)
 \[6 = 4z \]
 \[1.5 = z \]
1.6. Classifying Polygons

Learning Objectives

- Define triangle and polygon.
- Classify triangles by their sides and angles.
- Understand the difference between convex and concave polygons.
- Classify polygons by number of sides.

Review Queue

1. Draw a triangle.
2. Where have you seen 4, 5, 6 or 8 - sided polygons in real life? List 3 examples.
3. Fill in the blank.
 a. Vertical angles are always ____________.
 b. Linear pairs are ______________.
 c. The parts of an angle are called ____________ and a ____________.

Know What? The pentagon in Washington DC is a pentagon with congruent sides and angles. There is a smaller pentagon inside of the building that houses an outdoor courtyard. Looking at the picture, the building is divided up into 10 smaller sections. What are the shapes of these sections? Are any of these division lines diagonals? How do you know?

Triangles

Triangle: Any closed figure made by three line segments intersecting at their endpoints.
Every triangle has three **vertices** (the points where the segments meet), three **sides** (the segments), and three **interior angles** (formed at each vertex). All of the following shapes are triangles.

You might have also learned that the sum of the interior angles in a triangle is 180°. Later we will prove this, but for now you can use this fact to find missing angles.

Example 1: Which of the figures below are not triangles?

Solution: B is not a triangle because it has one curved side. D is not closed, so it is not a triangle either.

Example 2: How many triangles are in the diagram below?

Solution: Start by counting the smallest triangles, 16. Now count the triangles that are formed by 4 of the smaller triangles, 7. Next, count the triangles that are formed by 9 of the smaller triangles, 3.
Finally, there is the one triangle formed by all 16 smaller triangles. Adding these numbers together, we get $16 + 7 + 3 + 1 = 27$.

Classifying by Angles

Angles can be grouped by their angles; acute, obtuse or right. In any triangle, two of the angles will always be acute. The third angle can be acute, obtuse, or right. *We classify each triangle by this angle.*

Right Triangle: A triangle with one right angle.

Obtuse Triangle: A triangle with one obtuse angle.

Acute Triangle: A triangle where all three angles are acute.

Equiangular Triangle: When all the angles in a triangle are congruent.
Example 3: Which term best describes \(\triangle RST \) below?

Solution: This triangle has one labeled obtuse angle of 92\(^\circ\). Triangles can only have one obtuse angle, so it is an obtuse triangle.

Classifying by Sides

You can also group triangles by their sides.

Scalene Triangle: A triangle where all three sides are different lengths.

Isosceles Triangle: A triangle with at least two congruent sides.

Equilateral Triangle: A triangle with three congruent sides.

From the definitions, an equilateral triangle is also an isosceles triangle.

Example 4: Classify the triangle by its sides and angles.
1.6. Classifying Polygons

Solution: We see that there are two congruent sides, so it is isosceles. By the angles, they all look acute. We say this is an acute isosceles triangle.

Example 5: Classify the triangle by its sides and angles.

Solution: This triangle has a right angle and no sides are marked congruent. So, it is a right scalene triangle.

Polygons

Polyon: Any closed, 2-dimensional figure that is made entirely of line segments that intersect at their endpoints. Polygons can have any number of sides and angles, but the sides can never be curved. The segments are called the sides of the polygons, and the points where the segments intersect are called vertices.

Example 6: Which of the figures below is a polygon?

Solution: The easiest way to identify the polygon is to identify which shapes are not polygons. B and C each have at least one curved side, so they are not be polygons. D has all straight sides, but one of the vertices is not at the endpoint, so it is not a polygon. A is the only polygon.

Example 7: Which of the figures below is not a polygon?

Solution: C is a three-dimensional shape, so it does not lie within one plane, so it is not a polygon.

Convex and Concave Polygons

Polygons can be either convex or concave. The term concave refers to a cave, or the polygon is “caving in”. All stars are concave polygons.
A convex polygon does not do this. Convex polygons look like:

Diagonals: Line segments that connect the vertices of a convex polygon that are not sides.

The red lines are all diagonals.
This pentagon has 5 diagonals.

Example 8: Determine if the shapes below are convex or concave.

Solution: To see if a polygon is concave, look at the polygons and see if any angle “caves in” to the interior of the polygon. The first polygon does not do this, so it is convex. The other two do, so they are concave.

Example 9: How many diagonals does a 7-sided polygon have?

Solution: Draw a 7-sided polygon, also called a heptagon.
Drawing in all the diagonals and counting them, we see there are 14.
Classifying Polygons

Whether a polygon is convex or concave, it is always named by the number of sides.
<table>
<thead>
<tr>
<th>Polygon Name</th>
<th>Number of Sides</th>
<th>Number of Diagonals</th>
<th>Convex Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quadrilateral</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pentagon</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Hexagon</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Heptagon</td>
<td>7</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Octagon</td>
<td>8</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Nonagon</td>
<td>9</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>
Table 1.11: (continued)

<table>
<thead>
<tr>
<th>Polygon Name</th>
<th>Number of Sides</th>
<th>Number of Diagonals</th>
<th>Convex Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decagon</td>
<td>10</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Undecagon or hendecagon</td>
<td>11</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Dodecagon</td>
<td>12</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>n-gon</td>
<td>(n) (where (n > 12))</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

Example 10: Name the three polygons below by their number of sides and if it is convex or concave.

![Polygons](image)

Solution: The pink polygon is a concave hexagon (6 sides).
The green polygon convex pentagon (5 sides).
The yellow polygon is a convex decagon (10 sides).

Know What? Revisited The pentagon is divided up into 10 sections, all quadrilaterals. None of these dividing lines are diagonals because they are not drawn from vertices.

Review Questions

- Questions 1-8 are similar to Examples 3, 4 and 5.
- Questions 9-14 are similar to Examples 8 and 10
For questions 1-6, classify each triangle by its sides and by its angles.

1.
2.
3.
4.
5.
6.

7. Can you draw a triangle with a right angle and an obtuse angle? Why or why not?
8. In an isosceles triangle, can the angles opposite the congruent sides be obtuse?

In problems 9-14, name each polygon in as much detail as possible.
16. Classifying Polygons

15. Explain why the following figures are NOT polygons:

16. How many diagonals can you draw from one vertex of a pentagon? Draw a sketch of your answer.
17. How many diagonals can you draw from one vertex of an octagon? Draw a sketch of your answer.
18. How many diagonals can you draw from one vertex of a dodecagon?
19. Determine the number of total diagonals for an octagon, nonagon, decagon, undecagon, and dodecagon.

For 20-25, determine if the statement is true or false.

20. Obtuse triangles can be isosceles.
21. A polygon must be enclosed.
22. A star is a convex polygon.
23. A right triangle is acute.
24. An equilateral triangle is equiangular.
25. A quadrilateral is always a square.
26. A 5-point star is a decagon
Review Queue Answers

1.

2. Examples include: stop sign (8), table top (4), the Pentagon (5), snow crystals (6), bee hive combs (6), soccer ball pieces (5 and 6)
 a. congruent or equal
 b. supplementary
 c. sides, vertex
1.7 Chapter 1 Review

Symbol Toolbox

\(\overrightarrow{AB}, \overrightarrow{AB}, \overline{AB}\) - Line, ray, line segment
\(\angle ABC\) - Angle with vertex B
\(m\overline{AB}\) or \(AB\) - Distance between A and B
\(m\angle ABC\) - Measure of \(\angle ABC\)
\(\perp\) - Perpendicular
= - Equal
\(\cong\) - Congruent

Markings

Keywords, Postulates, and Theorems

Points, Lines, and Planes

- Geometry
- Point
- Line
- Plane
- Space
- Collinear
- Coplanar
- Endpoint
- Line Segment
- Ray
- Intersection
- Postulates
- Theorem
- Postulate 1-1
- Postulate 1-2
• Postulate 1-3
• Postulate 1-4
• Postulate 1-5

Segments and Distance

• Distance
• Measure
• Ruler Postulate
• Segment Addition Postulate

Angles and Measurement

• Angle
• Vertex
• Sides
• Protractor Postulate
• Straight Angle
• Right Angle
• Acute Angles
• Obtuse Angles
• Convex
• Concave
• Polygon
• Perpendicular
• Construction
• Compass
• Angle Addition Postulate

Midpoints and Bisectors

• Congruent
• Midpoint
• Midpoint Postulate
• Segment Bisector
• Perpendicular Bisector
• Perpendicular Bisector Postulate
• Angle Bisector
• Angle Bisector Postulate

Angle Pairs

• Complementary
• Supplementary
• Adjacent Angles
• Linear Pair
• Linear Pair Postulate
• Vertical Angles
• Vertical Angles Theorem

Classifying Polygons
1.7. Chapter 1 Review

- Triangle
- Right Triangle
- Obtuse Triangle
- Acute Triangle
- Equiangular Triangle
- Scalene Triangle
- Isosceles Triangle
- Equilateral Triangle
- Vertices
- Diagonals

Review

Match the definition or description with the correct word.

1. When three points lie on the same line. — A. Measure
2. All vertical angles are ________. — B. Congruent
3. Linear pairs add up to _______. — C. Angle Bisector
4. The \(m \) in from of \(m_{\angle ABC} \). — D. Ray
5. What you use to measure an angle. — E. Collinear
6. When two sides of a triangle are congruent. — F. Perpendicular
7. \(\perp \) — G. Line
8. A line that passes through the midpoint of another line. — H. Protractor
9. An angle that is greater than 90°. — I. Segment Addition Postulate
10. The intersection of two planes is a ___________. — J. Obtuse
11. \(AB + BC = AC \) — K. Point
12. An exact location in space. — L. 180°
13. A sunbeam, for example. — M. Isosceles
14. Every angle has exactly one. — N. Pentagon
15. A closed figure with 5 sides. — O. Hexagon

P. Bisector

Texas Instruments Resources

In the CK-12 Texas Instruments Geometry FlexBook® resource, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9686.
Keywords: Define, write theorems, and/or draw a diagram for each word below.

1st Section: Points, Lines, and Planes

Geometry
Point
Line
Plane
Space
Collinear
Coplanar
Endpoint
Line Segment
Ray
Intersection
Postulates
Theorem
Postulate 1-1
Postulate 1-2
Postulate 1-3
Postulate 1-4
Postulate 1-5

Use this picture to identify the geometric terms in this section.

Homework:

2nd Section: Segments and Distance
Distance
Measure
Ruler Postulate
Segment Addition Postulate

Homework:

3rd Section: Angles and Measurement
Angle
Vertex
Sides
Protractor Postulate
Straight Angle
Right Angle
Acute Angles
Obtuse Angles
Perpendicular
Construction
Compass
Angle Addition Postulate

Homework:

4th Section: Midpoints and Bisectors
Congruent
Midpoint.
Midpoint Postulate
Segment Bisector
Perpendicular Bisector
Perpendicular Bisector Postulate
Angle Bisector
Angle Bisector Postulate
Homework:

5th Section: Angle Pairs
- Complementary
- Supplementary
- Adjacent Angles
- Linear Pair
- Linear Pair Postulate
- Vertical Angles
- Vertical Angles Theorem

Homework:

6th Section: Classifying Polygons
- Draw your own pictures for this section
- Triangle
- Right Triangle
- Obtuse Triangle
- Acute Triangle
- Equiangular Triangle
Scalene Triangle
Isosceles Triangle
Equilateral Triangle
Vertices
Sides
Polygon
Convex Polygon
Concave Polygon
Quadrilateral, Pentagon, Hexagon, Heptagon, Octagon, Nonagon, Decagon…
Diagonals

Homework:
This chapter explains how to use reasoning to prove theorems about angle pairs and segments. This chapter also introduces the properties of congruence, which will be used in 2-column proofs.
2.1 Inductive Reasoning

Learning Objectives

- Recognize visual and number patterns.
- Write a counterexample.

Review Queue

1. Look at the patterns of numbers below. Determine the next three numbers in the list.
 a. 1, 2, 3, 4, 5, 6, _____, _____, _____
 b. 3, 6, 9, 12, 15, _____, _____, _____
 c. 5, 1, -3, -7, -11, _____, _____, _____

2. Are the statements below true or false? If they are false, state why.
 a. Perpendicular lines form four right angles.
 b. Linear pairs are always congruent.

3. For the line, \(y = 3x + 1 \):
 a. Find the slope.
 b. Find the \(y \)-intercept.
 c. Make an \(x \)-\(y \) table for \(x = 1, 2, 3, 4, \) and 5.

Know What?

This is the “famous” locker problem:

A new high school has just been completed. There are 100 lockers that are numbered 1 to 100. During recess, the students decide to try an experiment. The first student opens all of the locker doors. The second student closes all of the lockers with even numbers. The 3rd student changes every 3rd locker (change means closing lockers that are open, and opening lockers that are closed). The 4th student changes every 4th locker and so on.

Imagine that this continues until the 100 students have followed the pattern with the 100 lockers. At the end, which lockers will be open and which will be closed? Make a table to help you and use the following website:

http://www.mth.msu.edu/~nathsinc/java/Lockers/

Visual Patterns

Inductive Reasoning:
Making conclusions based upon examples and patterns.

Let’s look at some patterns to get a feel for what inductive reasoning is.

Example 1: A dot pattern is shown below. How many dots would there be in the 4th figure? How many dots would be in the 6th figure?
Solution: Draw a picture. Counting the dots, there are \(4 + 3 + 2 + 1 = 10\) dots.

For the 6th figure, we can use the same pattern, \(6 + 5 + 4 + 3 + 2 + 1\). There are 21 dots in the 6th figure.

Example 2: How many triangles would be in the 10th figure?

Solution: There would be 10 squares in the 10th figure, with a triangle above and below each one. There is also a triangle on each end of the figure. That makes \(10 + 10 + 2 = 22\) triangles in all.

Example 3: For two points, there is one line segment between them. For three non-collinear points, there are three segments. For four points, how many line segments are between them? If you add a fifth point, how many line segments are between the five points?

Solution: Draw a picture of each and count the segments.
2.1. Inductive Reasoning

For 4 points there are 6 line segments and for 5 points there are 10 line segments.

Number Patterns

Let’s look at a few examples.

Example 4: Look at the pattern 2, 4, 6, 8, 10, … What is the 19th term in the pattern?

Solution: For part a, each term is 2 more than the previous term.

\[
2, 4, 6, 8, 10, \ldots
\]

You could count out the pattern until the 19th term, but that could take a while. Notice that the 1st term is 2 \cdot 1, the 2nd term is 2 \cdot 2, the 3rd term is 2 \cdot 3, and so on. So, the 19th term would be 2 \cdot 19 or 38.

Example 5: Look at the pattern 1, 3, 5, 7, 9, 11, … What is the 34th term in the pattern?

Solution: The next term would be 13 and continue go up by 2. Comparing this pattern to Example 4, each term is one less. So, we can reason that the 34th term would be 34 \cdot 2 minus 1, which is 67.

Example 6: Look at the pattern: 3, 6, 12, 24, 48, …

a) What is the next term in the pattern?

b) The 10th term?

Solution: This pattern is different than the previous two examples. Here, each term is multiplied by 2 to get the next term.

\[
3, 6, 12, 24, 48, \ldots
\]

Therefore, the next term will be 48 \cdot 2 or 96. To find the 10th term, continue to multiply by 2, or \(3 \cdot 2 = 2^9\) which equals 1536.

Example 7: Find the 8th term in the list of numbers: 2, \(\frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \ldots\)

Solution: First, change 2 into a fraction, or \(\frac{2}{1}\). So, the pattern is now \(\frac{2}{1}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \ldots\). The top is 2, 3, 4, 5, 6. It increases by 1 each time, so the 8th term’s numerator is 9. The denominators are the square numbers, so the 8th term’s denominator is \(8^2\) or 64. The 8th term is \(\frac{9}{64}\).

Conjectures and Counterexamples

Conjecture: An “educated guess” that is based on examples in a pattern.

Example 8: Here’s an algebraic equation and a table of values for \(n\) and the result, \(t\).

\[t = (n - 1)(n - 2)(n - 3)\]
After looking at the table, Pablo makes this conjecture:

The value of \((n - 1)(n - 2)(n - 3)\) is 0 for any number \(n\).

Is this a true conjecture?

Solution: This is not a valid conjecture. If Pablo were to continue the table to \(n = 4\), he would have seen that
\[(n - 1)(n - 2)(n - 3) = (4 - 1)(4 - 2)(4 - 3) = (3)(2)(1) = 6 \]

In this example, \(n = 4\) is called a counterexample.

Counterexample: An example that disproves a conjecture.

Example 9: Arthur is making figures for an art project. He drew polygons and some of their diagonals.

From these examples, Arthur made this conjecture:

If a convex polygon has \(n\) sides, then there are \(n - 3\) triangles drawn from any vertex of the polygon.

Is Arthur’s conjecture correct? Or, can you find a counterexample?

Solution: The conjecture appears to be correct. If Arthur draws other polygons, in every case he will be able to draw \(n - 3\) triangles if the polygon has \(n\) sides.

Notice that we have *not proved* Arthur's conjecture, but only found several examples that hold true. So, at this point, we say that the conjecture is true.

Know What? Revisited The table below is the start of the 100 lockers and students. Students are vertical and the lockers are horizontal. X means the locker is closed, O means the locker is open.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>O</td>
<td></td>
<td>O</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
If you continue on in this way, the numbers that follow the pattern: $1, 4, 9, 16, \ldots$ are going to be the only open lockers. These numbers are called square numbers and they are: $1, 4, 9, 16, 25, 36, 49, 64, 81,$ and 100.

Review Questions

- Questions 1-5 are similar to Examples 1, 2a, and 3.
- Questions 6-17 are similar to Examples 4-7.
- Questions 18-25 are similar to Examples 8 and 9.

For questions 1-3, determine how many dots there would be in the 4^{th} and the 10^{th} pattern of each figure below.

1. Figure 1
2. Figure 1
3. Figure 1

4. Use the pattern below to answer the questions.

 a. Draw the next figure in the pattern.
 b. How does the number of points in each star relate to the figure number?

5. Use the pattern below to answer the questions. All the triangles are equilateral triangles.
a. Draw the next figure in the pattern. How many triangles does it have?
b. Determine how many triangles are in the 24^{th} figure.

For questions 6-13, determine: the next three terms in the pattern.

6. 5, 8, 11, 14, 17, …
7. 6, 1, -4, -9, -14, …
8. 2, 4, 8, 16, 32, …
9. 67, 56, 45, 34, 23, …
10. 9, -4, 6, -8, 3, …
11. $\frac{1}{3}, \frac{2}{3}, \frac{3}{3}, \frac{4}{3}, \frac{5}{3}, \ldots$
12. $\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{5}{5}, \ldots$
13. -1, 5, -9, 13, -17, …

For questions 14-17, determine the next two terms and describe the pattern.

14. 3, 6, 11, 18, 27, …
15. 3, 8, 15, 24, 35, …
16. 1, 8, 27, 64, 125, …
17. 1, 1, 2, 3, 5, …

For questions 18-23, give a counterexample for each of the following statements.

18. If n is a whole number, then $n^2 > n$.
19. Every prime number is an odd number.
20. All numbers that end in 1 are prime numbers.
21. All positive fractions are between 0 and 1.
22. Any three points that are coplanar are also collinear.
23. Congruent supplementary angles are also linear pairs.

Use the following story for questions 24 and 25.

A car salesman sold 5 used cars to five different couples. He noticed that each couple was under 30 years old. The following day, he sold a new, luxury car to a couple in their 60’s. The salesman determined that only younger couples by used cars.

24. Is the salesman’s conjecture logical? Why or why not?
25. Can you think of a counterexample?

Review Queue Answers

1.
2.1. Inductive Reasoning

2.
 a. 7, 8, 9
 b. 18, 21, 24
 c. 36, 49, 64

3.
 a. true
 b. false.
2.2 Conditional Statements

Learning Objectives

- Identify the hypothesis and conclusion of an if-then statement.
- Write the converse, inverse, and contrapositive of an if-then statement.

Review Queue

Find the next figure or term in the pattern.

1. 5, 8, 12, 17, 23, ...
2. \(\frac{2}{5}, \frac{3}{6}, \frac{4}{7}, \frac{5}{8}, \frac{6}{9}, \frac{7}{10}, \ldots \)
3. [Image of a triangle with dots]
4. Find a counterexample for the following conjectures.

 a. If it is April, then it is Spring Break.
 b. If it is June, then I am graduating.

Know What? Rube Goldberg was a cartoonist in the 1940s who drew crazy inventions to do very simple things. The invention to the right has a series of smaller tasks that leads to the machine wiping the man’s face with a napkin.

Describe each step, from A to M.
Conditional Statement (also called an **If-Then Statement**): A statement with a hypothesis followed by a conclusion.

Hypothesis: The first, or “if,” part of a conditional statement.

Conclusion: The second, or “then,” part of a conditional statement. The conclusion is the result of a hypothesis.

If-then statements might not always be written in the “if-then” form.

Statement 1: If you work overtime, then you’ll be paid time-and-a-half.

Statement 2: I’ll wash the car if the weather is nice.

Statement 3: If 2 divides evenly into \(x \), then \(x \) is an even number.

Statement 4: I’ll be a millionaire when I win monopoly.

Statement 5: All equiangular triangles are equilateral.

Statements 1 and 3 are written in the “if-then” form. The hypothesis of Statement 1 is “you work overtime.” The conclusion is “you’ll be paid time-and-a-half.”

So, if Sarah works overtime, then what will happen? From **Statement 1**, we can conclude that she will be paid time-and-a-half.

If 2 goes evenly into 16, what can you conclude? From **Statement 3**, we know that 16 must be an even number.

Statement 2 has the hypothesis after the conclusion. If the word “if” is in the middle of the statement, then the hypothesis is after it. The statement can be rewritten:

If the weather is nice, then I will wash the car.

Statement 4 uses the word “when” instead of “if” and is like Statement 2. It can be written:

If I win monopoly, then I will be a millionaire.

Statement 5 “if” and “then” are not there. It can be rewritten:

If a triangle is equiangular, then it is equilateral.

Example 1: Use the statement: *I will graduate when I pass Calculus.*

a) Rewrite in if-then form.

b) Determine the hypothesis and conclusion.

Solution: This statement is like Statement 4 above. It should be:

If I pass Calculus, then I will graduate.

The hypothesis is “I pass Calculus,” and the conclusion is “I will graduate.”

Converse, Inverse, and Contrapositive

Look at **Statement 2** again: *If the weather is nice, then I’ll wash the car.*
This can be rewritten using letters to represent the hypothesis and conclusion.

\[p = \text{the weather is nice} \quad q = \text{I’ll wash the car} \]

Now the statement is: If \(p \), then \(q \).

An arrow can also be used in place of the “if-then”: \(p \rightarrow q \)

We can also make the negations, or “nots” of \(p \) and \(q \). The symbolic version of not \(p \), is \(\sim p \).

\[\sim p = \text{the weather is not nice} \quad \sim q = \text{I won’t wash the car} \]

Using these “nots” and switching the order of \(p \) and \(q \), we can create three new statements.

\[\text{Converse} \quad q \rightarrow p \]
\[\text{If I wash the car, then the weather is nice.} \]

\[\text{Inverse} \quad \sim p \rightarrow \sim q \]
\[\text{If the weather is not nice, then I won’t wash the car.} \]

\[\text{Contrapositive} \quad \sim q \rightarrow \sim p \]
\[\text{If I don’t wash the car, then the weather is not nice.} \]

If the “if-then” statement is true, then the contrapositive is also true. The contrapositive is \textit{logically equivalent} to the original statement. The converse and inverse may or may not be true.

Example 2: If \(n > 2 \), then \(n^2 > 4 \).

a) Find the converse, inverse, and contrapositive.

b) Determine if the statements from part a are true or false. If they are false, find a counterexample.

Solution: The original statement is true.

\[\text{Converse: } \quad \text{If } n^2 > 4, \text{ then } n > 2. \quad \text{False. If } n^2 = 9, n = -3 \text{ or } 3. \quad (-3)^2 = 9 \]

\[\text{Inverse: } \quad \text{If } n < 2, \text{ then } n^2 < 4. \quad \text{False. If } n = -3, \text{ then } n^2 = 9. \]

\[\text{Contrapositive: } \quad \text{If } n^2 < 4, \text{ then } n < 2. \quad \text{True. the only } n^2 < 4 \text{ is } 1. \quad \sqrt{1} = \pm 1 \]

which are both less then 2.

Example 3: If I am at Disneyland, then I am in California.

a) Find the converse, inverse, and contrapositive.

b) Determine if the statements from part a are true or false. If they are false, find a counterexample.

Solution: The original statement is true.

\[\text{Converse: } \quad \text{If I am in California, then I am at Disneyland.} \quad \text{False. I could be in San Francisco.} \]

\[\text{Inverse: } \quad \text{If I am not at Disneyland, then I am not in California.} \quad \text{False. Again, I could be in San Francisco.} \]

\[\text{Contrapositive: } \quad \text{If I am not in California, then I am not at Disneyland.} \quad \text{True. If I am not in the state, I couldn’t be at Disneyland.} \]
2.2. Conditional Statements

Notice for the converse and inverse we can use the same counterexample.

Example 4: Any two points are collinear.

a) Find the converse, inverse, and contrapositive.
b) Determine if the statements from part a are true or false. If they are false, find a counterexample.

Solution: First, change the statement into an “if-then” statement:

If two points are on the same line, then they are collinear.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Converse:</td>
<td>If two points are collinear, then they are on the same line. True.</td>
</tr>
<tr>
<td>Inverse:</td>
<td>If two points are not on the same line, then they are not collinear. True.</td>
</tr>
<tr>
<td>Contrapositive:</td>
<td>If two points are not collinear, then they do not lie on the same line. True.</td>
</tr>
</tbody>
</table>

Biconditional Statements

Example 4 is an example of a biconditional statement.

Biconditional Statement: When the original statement and converse are both true.

\[p \rightarrow q \text{ is true} \]
\[q \rightarrow p \text{ is true} \]

then, \(p \iff q \), said “\(p \) if and only if \(q \)”

Example 5: Rewrite Example 4 as a biconditional statement.

Solution: *If two points are on the same line, then they are collinear* can be rewritten as:

Two points are on the same line if and only if they are collinear.

Replace the “if-then” with “if and only if” in the middle of the statement.

Example 6: The following is a true statement:

\(m\angle ABC > 90^\circ \) if and only if \(\angle ABC \) is an obtuse angle.

Determine the two true statements within this biconditional.

Solution: *Statement 1:* If \(m\angle ABC > 90^\circ \), then \(\angle ABC \) is an obtuse angle.

Statement 2: If \(\angle ABC \) is an obtuse angle, then \(m\angle ABC > 90^\circ \).

This is the definition of an obtuse angle. *All geometric definitions are biconditional statements.*

Example 7: \(p : x < 10 \quad q : 2x < 50 \)

a) Is \(p \rightarrow q \) true? If not, find a counterexample.
b) Is \(q \rightarrow p \) true? If not, find a counterexample.
c) Is \(\sim p \rightarrow \sim q \) true? If not, find a counterexample.
d) Is \(\sim q \rightarrow \sim p \) true? If not, find a counterexample.

Solution:
a) If \(x < 10 \), then \(2x < 50 \). *True.*
b) If \(2x < 50 \), then \(x < 10 \). *False*, \(x = 15 \)
c) If \(x > 10 \), then \(2x > 50 \). \textbf{False}, \(x = 15 \)
d) If \(2x > 50 \), then \(x > 10 \). \textbf{True}, \(x \geq 25 \)

\textbf{Know What? Revisited} The series of events is as follows:
If the man raises his spoon, then it pulls a string, which tugs the spoon back, then it throws a cracker into the air, the bird will eat it and turns the pedestal. Then the water tips over, which goes into the bucket, pulls down the string, the string opens the box, where a fire lights the rocket and goes off. This allows the hook to pull the string and then the man’s face is wiped with the napkin.

\textbf{Review Questions}

- Questions 1-6 are similar to Statements 1-5 and Example 1.
- Questions 7-16 are similar to Examples 2, 3, and 4.
- Questions 17-22 are similar to Examples 5 and 6.
- Questions 23-25 are similar to Example 7.

For questions 1-6, determine the hypothesis and the conclusion.

1. If 5 divides evenly into \(x \), then \(x \) ends in 0 or 5.
2. If a triangle has three congruent sides, it is an equilateral triangle.
3. Three points are coplanar if they all lie in the same plane.
4. If \(x = 3 \), then \(x^2 = 9 \).
5. If you take yoga, then you are relaxed.
6. All baseball players wear hats.
7. Write the converse, inverse, and contrapositive of #1. Determine if they are true or false. If they are false, find a counterexample.
8. Write the converse, inverse, and contrapositive of #5. Determine if they are true or false. If they are false, find a counterexample.
9. Write the converse, inverse, and contrapositive of #6. Determine if they are true or false. If they are false, find a counterexample.
10. Find the converse of #2. If it is true, write the biconditional of the statement.
11. Find the converse of #3. If it is true, write the biconditional of the statement.
12. Find the converse of #4. If it is true, write the biconditional of the statement.

For questions 13-16, use the statement:
If \(AB = 5 \) and \(BC = 5 \), then \(B \) is the midpoint of \(\overline{AC} \).

13. Is this a true statement? If not, what is a counterexample?
14. Find the converse of this statement. Is it true?
15. Find the inverse of this statement. Is it true?
16. Find the contrapositive of #14. Which statement is it the same as?

Find the converse of each true if-then statement. If the converse is true, write the biconditional statement.

17. An acute angle is less than 90°.
18. If you are at the beach, then you are sun burnt.
19. If \(x > 4 \), then \(x + 3 > 7 \).

For questions 20-22, determine the two true conditional statements from the given biconditional statements.
20. A U.S. citizen can vote if and only if he or she is 18 or more years old.
21. A whole number is prime if and only if its factors are 1 and itself.
22. \(2x = 18\) if and only if \(x = 9\).

For questions 23-25, determine if:
(a) \(p \rightarrow q\) is true.
(b) \(q \rightarrow p\) is true.
(c) \(\sim p \rightarrow \sim q\) is true.
(d) \(\sim q \rightarrow \sim p\) is true.

If any are false, find a counterexample.

23. \(p: \) Joe is 16. \(- q: \) He has a driver’s license.
24. \(p: \) A number ends in 5. \(- q: \) It is divisible by 5.
25. \(p: x = 4\) \(- q: x^2 = 16\)

Review Queue Answers

1. 30
2. \(\frac{7}{11}\)

4.
 a. It could be another day that isn’t during Spring Break. Spring Break doesn’t last the entire month.
 b. You could be a freshman, sophomore or junior. There are several counterexamples.
2.3 Deductive Reasoning

Learning Objectives

• Apply basic rules of logic.
• Compare inductive reasoning and deductive reasoning.

Review Queue

1. Write the converse, inverse, and contrapositive of the following statement: Football players wear shoulder pads.
2. Are the converse, inverse or contrapositive of #1 true? If not, find a counterexample.
3. An if-then statement is $p \rightarrow q$.
 a. What is the inverse of $p \rightarrow q$?
 b. What is the converse of the inverse of $p \rightarrow q$?

Know What? In a fictitious far-away land, a peasant is awaiting his fate from the king. He is standing in a stadium, with two doors in front of him. Both doors have signs on them, which are below:

<table>
<thead>
<tr>
<th>Door A</th>
<th>Door B</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN THIS ROOM THERE IS A LADY, AND IN THE OTHER ROOM THERE IS A TIGER.</td>
<td>IN ONE OF THESE ROOMS THERE IS A LADY, AND IN ONE OF THE OTHER ROOMS THERE IS A TIGER.</td>
</tr>
</tbody>
</table>

The king states, “Only one of these statements is true. If you pick correctly, you will find the lady. If not, the tiger will be waiting for you.” Which door should the peasant pick?

Deductive Reasoning

Logic: The study of reasoning.

In the first section, you learned about inductive reasoning, making conclusions based upon patterns. Now, we will learn about deductive reasoning.

Deductive Reasoning: Drawing conclusion from facts. Conclusions are usually drawn from general statements about something more specific.

Example 1: Suppose Bea makes the following statements, which are known to be true.

If Central High School wins today, they will go to the regional tournament. Central High School won today.
2.3. Deductive Reasoning

What is the logical conclusion?

Solution: This is an example of deductive reasoning. These are true statements that we can take as facts. The conclusion is: Central High School will go to the regional tournament.

Example 2: Here are two true statements.

Every odd number is the sum of an even and an odd number.

5 is an odd number.

What can you conclude?

Solution: Based on only these two true statements, there is one conclusion: *5 is the sum of an even and an odd number.* (This is true, $5 = 3 + 2$ or $4 + 1$).

Law of Detachment

Let’s look at Example 2 and change it into symbolic form.

\[p : A \text{ number is odd} \quad q : \text{It is the sum of an even and odd number} \]

The first statement is $p \rightarrow q$.

- The second statement in Example 2, “5 is an odd number,” is a specific example of p. “A number” is 5.
- The conclusion is q, “5 is the sum of an even and an odd number.”

The symbolic form of Example 2 is:

\[
\begin{align*}
 p \rightarrow q \\
 p \\
 \therefore q
\end{align*}
\]

symbol for therefore

All deductive arguments that follow this pattern have a special name, the Law of Detachment.

Law of Detachment: If $p \rightarrow q$ is true, and p is true, then q is true.

Example 3: Here are two true statements.

*If $\angle A$ and $\angle B$ are a linear pair, then $m\angle A + m\angle B = 180^\circ$.***

$\angle ABC$ and $\angle CBD$ are a linear pair.

What conclusion can you draw from this?

Solution: This is an example of the Law of Detachment, therefore:

\[m\angle ABC + m\angle CBD = 180^\circ \]

Example 4: Here are two true statements. *Be careful!*

*If $\angle A$ and $\angle B$ are a linear pair, then $m\angle A + m\angle B = 180^\circ$.***
$m \angle 1 = 90^\circ$ and $m \angle 2 = 90^\circ$.

What conclusion can you draw from these two statements?

Solution: Here there is NO conclusion. These statements are in the form:

\[p \rightarrow q \]
\[q \]

We cannot conclude that $\angle 1$ and $\angle 2$ are a linear pair.

Here are two counterexamples:

\[1 \]
\[2 \]

Law of Contrapositive

Example 5: The following two statements are true.

If a student is in Geometry, then he or she has passed Algebra I.

Daniel has not passed Algebra I.

What can you conclude from these two statements?

Solution: These statements are in the form:

\[p \rightarrow q \]
\[\sim q \]

Not q is the beginning of the contrapositive ($\sim q \rightarrow \sim p$), therefore the logical conclusion is not p: *Daniel is not in Geometry.*

This example is called the Law of Contrapositive.

Law of Contrapositive: If $p \rightarrow q$ is true and $\sim q$ is true. Then, you can conclude $\sim p$.

The Law of Contrapositive is a logical argument.

Example 6: Determine the conclusion from the true statements below.

Babies wear diapers.

My little brother does not wear diapers.

Solution: The second statement is the equivalent of $\sim q$. Therefore, the conclusion is $\sim p$, or: *My little brother is not a baby.*

Example 7: Determine the conclusion from the true statements below.
If you are not in Chicago, then you can’t be on the L.
Bill is in Chicago.

Solution: If we were to rewrite this symbolically, it would look like:

\[\sim p \rightarrow \sim q \]
\[p \]

This is not in the form of the Law of Contrapositive or the Law of Detachment, so there is no logical conclusion.

Example 8: Determine the conclusion from the true statements below.
If you are not in Chicago, then you can’t be on the L.
Sally is on the L.

Solution: If we were to rewrite this symbolically, it would look like:

\[\sim p \rightarrow \sim q \]
\[q \]

Even though it looks a little different, this is an example of the Law of Contrapositive. Therefore, the logical conclusion is: Sally is in Chicago.

Law of Syllogism

Example 9: Determine the conclusion from the following true statements.
If Pete is late, Mark will be late.
If Mark is late, Karl will be late.

So, if Pete is late, what will happen?

Solution: If Pete is late, this starts a domino effect of lateness. Mark will be late and Karl will be late too. So, if Pete is late, then Karl will be late, is the logical conclusion.

Each “then” becomes the next “if” in a chain of statements. This is called the Law of Syllogism.

Law of Syllogism: If \(p \rightarrow q \) and \(q \rightarrow r \) are true, then \(p \rightarrow r \) is true.

Inductive vs. Deductive Reasoning

Inductive Reasoning: Using Patterns

Deductive Reasoning: Using Facts

Example 10: Solving an equation for \(x \) is an example of inductive or deductive reasoning?

Solution: Deductive reasoning. Solving an equation uses Properties of Equality (facts) to solve a problem for \(x \).

Example 11: \(1, 10, 100, 1000, \ldots \) is an example of inductive or deductive reasoning?
Solution: Inductive reasoning. This is a pattern.

Example 12: Doing an experiment and writing a hypothesis is an example of inductive or deductive reasoning?

Solution: Inductive reasoning. Making a hypothesis comes from the patterns found in the experiment. These are not facts.

Example 13: Proving the experiment from Example 12 is true is an example of inductive or deductive reasoning?

Solution: Deductive reasoning. Here you would have to use facts to prove what happened in the experiment is supposed to happen.

Know What? Revisited Analyze the two statements on the doors.

Door A: IN THIS ROOM THERE IS A LADY, AND IN THE OTHER ROOM THERE IS A TIGER.
Door B: IN ONE OF THESE ROOMS THERE IS A LADY, AND IN ONE OF THE OTHER ROOMS THERE IS A TIGER.

We know that one door is true, so the other one must be false. Read Door B carefully, it says “in one of these rooms,” which means the lady could be behind either door, which has to be true. So, because Door B is the true statement, Door A is false and the tiger is behind it. The peasant should pick Door B.

Review Questions

Determine the logical conclusion and state which law you used (Law of Detachment, Law of Contrapositive, or Law of Syllogism). If no conclusion can be drawn, write “no conclusion.”

1. People who vote for Jane Wannabe are smart people. I voted for Jane Wannabe.
2. If Rae is the driver today then Maria is the driver tomorrow. Ann is the driver today.
3. All equiangular triangles are equilateral. \(\triangle ABC \) is equiangular.
4. If North wins, then West wins. If West wins, then East loses.
5. If \(z > 5 \), then \(x > 3 \). If \(x > 3 \), then \(y > 7 \).
6. If I am cold, then I wear a jacket. I am not wearing a jacket.
7. If it is raining outside, then I need an umbrella. It is not raining outside.
8. If a shape is a circle, then it never ends. If it never ends, then it never starts. If it never starts, then it doesn’t exist. If it doesn’t exist, then we don’t need to study it.
9. If you text while driving, then you are unsafe. You are a safe driver.
10. If you wear sunglasses, then it is sunny outside. You are wearing sunglasses.
11. If you wear sunglasses, then it is sunny outside. It is cloudy.
12. I will clean my room if my mom asks me to. I am not cleaning my room.
13. Write the symbolic representation of #8. Include your conclusion. Does this argument make sense?
14. Write the symbolic representation of #10. Include your conclusion.
15. Write the symbolic representation of #11. Include your conclusion.

Determine if the problems below represent inductive or deductive reasoning. Briefly explain your answer.

16. John is watching the weather. As the day goes on it gets more and more cloudy and cold. He concludes that it is going to rain.
17. Beth’s 2-year-old sister only eats hot dogs, blueberries and yogurt. Beth decides to give her sister some yogurt because she is hungry.
18. Nolan Ryan has the most strikeouts of any pitcher in Major League Baseball. Jeff debates that he is the best pitcher of all-time for this reason.
19. Ocean currents and waves are dictated by the weather and the phase of the moon. Surfers use this information to determine when it is a good time to hit the water.
2.3. Deductive Reasoning

20. As Rich is driving along the 405, he notices that as he gets closer to LAX the traffic slows down. As he passes it, it speeds back up. He concludes that anytime he drives past an airport, the traffic will slow down.

Determine if the following statements are true or false.

21. The Law of Detachment uses an if-then statement and its hypothesis to draw a conclusion.
22. There is a Law of Inverse.
23. Sometimes arguments can be valid, but not make sense.
24. The Law of Syllogism takes the conclusion from a statement and makes it the hypothesis of the next.
25. Number patterns are an example of deductive reasoning.

Review Queue Answers

1. Converse: If you wear shoulder pads, then you are a football player.
Inverse: If you are not a football player, then you do not wear shoulder pads.
Contrapositive: If you do not wear shoulder pads, then you are not a football player.
2. The converse and inverse are both false. A counterexample for both could be a woman from the 80’s. They definitely wore shoulder pads!
3. (a) ∼p → ∼q
(b) The converse of the ∼p → ∼q is ∼q → ∼p, or the contrapositive.
Learning Objectives

- Understand basic properties of equality and congruence.
- Solve equations and justify each step.
- Fill in the blanks of a 2-column proof.

Review Queue

Solve the following problems.

1. Solve $2x - 3 = 9$.
2. If two angles are a linear pair, they are supplementary. If two angles are supplementary, their sum is 180°.
 What can you conclude? By which law?
3. Draw a picture with the following:
 \[\triangle LMN \text{ is bisected by } \overline{MO} \]
 \[\angle OMP \text{ is bisected by } \overline{MN} \]
 \[LM \cong MP \]
 \[N \text{ is the midpoint of } \overline{MQ} \]

Know What? Three identical triplets are sitting next to each other. The oldest is Sara and she always tells the truth. The next oldest is Sue and she always lies. Sally is the youngest of the three. She sometimes lies and sometimes tells the truth.

Scott came over one day and didn’t know who was who, so he asked each sister who was sitting in the middle. Who is who?

That’s Sara. I’m Sally. She is Sue.
2.4. Algebraic and Congruence Properties

Properties of Equality

Recall from Chapter 1 that the = sign and the word “equality” are used with numbers. The basic properties of equality were introduced to you in Algebra I. Here they are again:

Reflexive Property of Equality — $AB = AB$

Symmetric Property of Equality — $m \angle A = m \angle B$ and $m \angle B = m \angle A$

Transitive Property of Equality — $AB = CD$ and $CD = EF$, then $AB = EF$

Substitution Property of Equality — If $a = 9$ and $a - c = 5$, then $9 - c = 5$

Addition Property of Equality — If $2x = 6$, then $2x + 5 = 6 + 5$ or $2x + 5 = 11$

Subtraction Property of Equality — If $m \angle x + 15^\circ = 65^\circ$, then $m \angle x + 15^\circ - 15^\circ = 65^\circ - 15^\circ$ or $m \angle x = 50^\circ$

Multiplication Property of Equality — If $y = 8$, then $5 \cdot y = 5 \cdot 8$ or $5y = 40$

Division Property of Equality — If $3b = 18$, then $\frac{3b}{3} = \frac{18}{3}$ or $b = 6$

Distributive Property — $5(2x - 7) = 5(2x) - 5(7) = 10x - 35$

Properties of Congruence

Recall that $\overline{AB} \cong \overline{CD}$ if and only if $AB = CD$ and $\angle ABC \cong \angle DEF$ if and only if $m \angle ABC = m \angle DEF$. The Properties of Equality work for $AB, CD, m \angle ABC$ and $m \angle DEF$.

Just like the properties of equality, there are properties of congruence. These properties hold for figures and shapes.

<table>
<thead>
<tr>
<th>Properties of Congruence</th>
<th>For Line Segments</th>
<th>For Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflexive Property of Congruence</td>
<td>$\overline{AB} \cong \overline{AB}$</td>
<td>$\angle B \cong \angle B$</td>
</tr>
<tr>
<td>Symmetric Property of Congruence</td>
<td>If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$</td>
<td>If $\angle ABC \cong \angle DEF$, then $\angle DEF \cong \angle ABC$</td>
</tr>
<tr>
<td>Transitive Property of Congruence</td>
<td>If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$</td>
<td>If $\angle ABC \cong \angle DEF$ and $\angle DEF \cong \angle GHI$, then $\angle ABC \cong \angle GHI$</td>
</tr>
</tbody>
</table>

Using Properties of Equality with Equations

When you solve equations in algebra you use properties of equality. You might not write out the property for each step, but you should know that there is an equality property that justifies that step. We will abbreviate “Property of Equality” “PoE” and “Property of Congruence” “PoC.”

Example 1: Solve $2(3x - 4) + 11 = x - 27$ and write the property for each step (also called “to justify each step”).

Solution:
\(2(3x - 4) + 11 = x - 27\)
\(6x - 8 + 11 = x - 27\)
Distributive Property
\(6x + 3 = x - 27\)
Combine like terms
\(6x + 3 - 3 = x - 27 - 3\)
Subtraction PoE
\(6x = x - 30\)
Simplify
\(6x - x = x - x - 30\)
Subtraction PoE
\(5x = -30\)
simplify
\(\frac{5x}{5} = \frac{-30}{5}\)
Division PoE
\(x = -6\)
Simplify

Example 2: \(AB = 8, BC = 17\), and \(AC = 20\). Are points \(A, B,\) and \(C\) collinear?

Solution: Set up an equation using the Segment Addition Postulate.

\(AB + BC = AC\)
Segment Addition Postulate
\(8 + 17 = 20\)
Substitution PoE
\(25 \neq 20\)
Combine like terms

Because the two sides are not equal, \(A, B\) and \(C\) are not collinear.

Example 3: If \(m\angle A + m\angle B = 100^\circ\) and \(m\angle B = 40^\circ\), prove that \(\angle A\) is an acute angle.

Solution: We will use a 2-column format, with statements in one column and their reasons next to it, just like Example 1.

\(m\angle A + m\angle B = 100^\circ\)
Given Information
\(m\angle B = 40^\circ\)
Given Information
\(m\angle A + 40^\circ = 100^\circ\)
Substitution PoE
\(m\angle A = 60^\circ\)
Subtraction PoE
\(\angle A\) is an acute angle
Definition of an acute angle, \(m\angle A < 90^\circ\)

Two-Column Proof

Examples 1 and 3 are examples of two-column proofs. They both have the left side, the statements, and on the right side are the reason for these statements. Here we will continue with more proofs and some helpful tips for completing one.
Example 4: Write a two-column proof for the following:

If \(A, B, C,\) and \(D\) are points on a line, in the given order, and \(AB = CD\), then \(AC = BD\).

Solution: When the statement is given in this way, the “if” part is the given and the “then” part is what we are trying to prove.

Always start with drawing a picture of what you are given.

Plot the points in the order \(A, B, C, D\) on a line.

Add the given, \(AB = CD\).

Draw the 2-column proof and start with the given information.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (A, B, C,) and (D) are collinear, in that order.</td>
<td>Given</td>
</tr>
<tr>
<td>2. (AB = CD)</td>
<td>Given</td>
</tr>
<tr>
<td>3. (BC = BC)</td>
<td>Reflexive PoE</td>
</tr>
<tr>
<td>4. (AB + BC = BC + CD)</td>
<td>Addition PoE</td>
</tr>
<tr>
<td>5. (AB + BC = AC)</td>
<td>Segment Addition Postulate</td>
</tr>
<tr>
<td>(BC + CD = BD)</td>
<td></td>
</tr>
<tr>
<td>6. (AC = BD)</td>
<td>Substitution or Transitive PoE</td>
</tr>
</tbody>
</table>

Once we reach what we wanted to prove, we are done.

When completing a proof, these keep things in mind:

- Number each step.
- Start with the given information.
- Statements with the same reason can (or cannot) be combined into one step. It is up to you. For example, steps 1 and 2 above could have been one step. And, in step 5, the two statements could have been written separately.
- Draw a picture and mark it with the given information.
- You must have a reason for EVERY statement.
- The order of the statements in the proof is not fixed. For example, steps 3, 4, and 5 could have been interchanged and it would still make sense.
- Reasons will be definitions, postulates, properties and previously proven theorems. “Given” is only used as a reason if the information in the statement column was told in the problem.

Example 5: Write a two-column proof.

Given: \(BF\) bisects \(\angle ABC; \ \angle ABD \cong \angle CBE\)

Prove: \(\angle DBF \cong \angle EBF\)
Solution: First, put the appropriate markings on the picture. Recall, that bisect means “to cut in half.” Therefore, \(m\angle ABF = m\angle FBC \).

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\overrightarrow{BF}) bisects (\angle ABC, \angle ABD \cong \angle CBE)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (m\angle ABF = m\angle FBC)</td>
<td>Definition of an Angle Bisector</td>
</tr>
<tr>
<td>3. (m\angle ABD = m\angle CBE)</td>
<td>If angles are (\cong), then their measures are equal.</td>
</tr>
<tr>
<td>4. (m\angle ABF = m\angle ABD + m\angle DBF)</td>
<td>Angle Addition Postulate</td>
</tr>
<tr>
<td>(m\angle FBC = m\angle EBF + m\angle CBE)</td>
<td></td>
</tr>
<tr>
<td>5. (m\angle ABD + m\angle DBF = m\angle EBF + m\angle CBE)</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>6. (m\angle ABD + m\angle DBF = m\angle EBF + m\angle ABD)</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>7. (m\angle DBF = m\angle EBF)</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>8. (\angle DBF \cong \angle EBF)</td>
<td>If measures are equal, the angles are (\cong).</td>
</tr>
</tbody>
</table>

Use symbols and abbreviations for words within proofs. For example, \(\cong \) was used in place of the word *congruent* above. You could also use \(\angle \) for the word angle.

Know What? Revisited Analyzing the picture and what we know the sister on the left cannot be Sara because she lied (if we take what the sister in the middle said as truth). So, let’s assume that the sister in the middle is telling the truth, she is Sally. However, we know this is impossible, because that would have to mean that the sister on the right is lying and Sarah does not lie. From this, that means that the sister on the right is Sara and she is telling the truth, the sister in the middle is Sue. So, the first sister is Sally. The order is: Sally, Sue, Sara.
Review Questions

- Questions 1-8 are similar to Examples 1 and 3.
- Questions 9-14 use the Properties of Equality.
- Questions 15-17 are similar to Example 2.
- Questions 18 and 19 are similar to Examples 8 and 9.
- Questions 20-34 are review.

For questions 1-8, solve each equation and justify each step.

1. \(3x + 11 = -16\)
2. \(7x - 3 = 3x - 35\)
3. \(\frac{2}{3}g + 1 = 19\)
4. \(\frac{1}{2}MN = 5\)
5. \(5m \angle ABC = 540^\circ\)
6. \(10b - 2(b + 3) = 5b\)
7. \(\frac{1}{3}y + \frac{5}{6} = \frac{1}{4}\)
8. \(\frac{1}{4}AB + \frac{1}{3}AB = 12 + \frac{1}{2}AB\)

For questions 9-14, use the given property or properties of equality to fill in the blank. \(x, y,\) and \(z\) are real numbers.

9. Symmetric: If \(x = 3\), then ____________.
10. Distributive: If \(4(3x - 8)\), then ________________.
11. Transitive: If \(y = 12\) and \(x = y\), then ________________.
12. Symmetric: If \(x + y = y + z\), then ________________.
13. Transitive: If \(AB = 5\) and \(AB = CD\), then ________________.
14. Substitution: If \(x = y - 7\) and \(x = z + 4\), then ________________.
15. Given points \(E, F,\) and \(G\) and \(EF = 16, FG = 7\) and \(EG = 23\). Determine if \(E, F\) and \(G\) are collinear.
16. Given points \(H, I,\) and \(J\) and \(HI = 9, IJ = 9\) and \(HJ = 16\). Are the three points collinear? Is \(I\) the midpoint?
17. If \(\angle KLM = 56^\circ\) and \(\angle KLM + \angle NOP = 180^\circ\), explain how \(\angle NOP\) must be an obtuse angle.

Fill in the blanks in the proofs below.

18. Given: \(\angle ABC \cong \angle DEF \cong \angle GHI \cong \angle JKL\) Prove: \(m\angle ABC + m\angle GHI = m\angle DEF + m\angle JKL\)
19. **Given:** M is the midpoint of AN. N is the midpoint of MB
Prove: $AM = NB$

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
</tbody>
</table>
| 2. $m\angle ABC = m\angle DEF$
$m\angle GHI = m\angle JKL$ | |
| 3. | Addition PoE |
| 4. $m\angle ABC + m\angle GHI = m\angle DEF + m\angle JKL$ | |

Table 2.8:

20. Name a right angle.
21. Name two perpendicular lines.
22. Given that $EF = GH$, is $EG = FH$ true? Explain your answer.
23. Is $\angle CGH$ a right angle? Why or why not?
24. Fill in the blanks:

$$m\angle ABF = m\angle ABE + m\angle$$
$$m\angle DCG = m\angle DCH + m\angle$$

25. Fill in the blanks:

$$AB + _ = AC$$
$$_ + CD = BD$$

Use the diagram to answer questions 26-31.
2.4. Algebraic and Congruence Properties

Which of the following must be true from the diagram?
Take each question separately, they do not build upon each other.

26. $\overline{AD} \cong \overline{BC}$
27. $\overline{AB} \cong \overline{CD}$
28. $\overline{CD} \cong \overline{BC}$
29. $\overline{AB} \perp \overline{AD}$
30. $ABCD$ is a square
31. \overline{AC} bisects $\angle DAB$

Use the diagram to answer questions 32-34.

Given: B bisects \overline{AD}, C is the midpoint of \overline{BD} and $AD = 12$.
What is the value of each of the following?

32. AB
33. BC
34. AC

Review Queue Answers

1. $x = 3$
2. If 2 angles are a linear pair, then their sum is 180°. Law of Syllogism.

3.
2.5 Proofs about Angle Pairs and Segments

Learning Objectives

- Use theorems about pairs of angles, right angles and midpoints.

Review Queue

Fill in the 2-column proof.

1. Given: VX is the angle bisector of \(\angle WVY \).
 VY is the angle bisector of \(\angle XVZ \).

 Prove: \(\angle WVX \cong \angle YVZ \)

 TABLE 2.10:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Given</td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3. (m\angle WVX = m\angle YVZ)</td>
<td>Definition of an Angle Bisector</td>
</tr>
<tr>
<td>4. (\angle WVX \cong \angle YVZ)</td>
<td></td>
</tr>
</tbody>
</table>

Know What? The game of pool relies heavily on angles. The angle at which you hit the cue ball with your cue determines if you hit the yellow ball and if you can hit it into the pocket.
The best path to get the yellow ball into the corner pocket is to use the path in the picture to the right. You measure and need to hit the cue ball so that it hits the side of the table at a 50° angle (this would be $m \angle 1$). Find $m \angle 2$ and how it relates to $\angle 1$.

If you would like to play with the angles of pool, click the link for an interactive game. http://www.coolmath-games.com/0-poolgeometry/index.html

Naming Angles

As we learned in Chapter 1, angles can be addressed by numbers and three letters, where the letter in the middle is the vertex. **We can shorten this label to only the middle letter if there is only one angle with that vertex.**

All of the angles in this parallelogram can be labeled by one letter, the vertex, instead of all three.

$$\angle MLP \text{ is } \angle L$$

$$\angle MOP \text{ is } \angle O$$

$$\angle LMO \text{ is } \angle M$$

$$\angle OPL \text{ is } \angle P$$

Right Angle Theorem: If two angles are right angles, then the angles are congruent.

Proof of the Right Angle Theorem

Given: $\angle A$ and $\angle B$ are right angles

Prove: $\angle A \cong \angle B$

Table 2.11:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\angle A$ and $\angle B$ are right angles</td>
<td>Given</td>
</tr>
<tr>
<td>2. $m \angle A = 90^\circ$ and $m \angle B = 90^\circ$</td>
<td>Definition of right angles</td>
</tr>
<tr>
<td>3. $m \angle A = m \angle B$</td>
<td>Transitive PoE</td>
</tr>
<tr>
<td>$\therefore \angle A \cong \angle B$</td>
<td>\cong angles have = measures</td>
</tr>
</tbody>
</table>
Anytime right angles are mentioned in a proof, you will need to use this theorem to say the angles are congruent.

Same Angle Supplements Theorem: If two angles are supplementary to the same angle then the angles are congruent.

\[
\begin{align*}
m\angle A + m\angle B &= 180^\circ \\
m\angle C + m\angle B &= 180^\circ \\
\text{then } m\angle A &= m\angle C
\end{align*}
\]

Proof of the Same Angles Supplements Theorem

Given: \(\angle A \) and \(\angle B \) are supplementary angles. \(\angle B \) and \(\angle C \) are supplementary angles.

Prove: \(\angle A \cong \angle C \)

Table 2.12:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle A) and (\angle B) are supplementary (\angle B) and (\angle C) are supplementary</td>
<td>Given</td>
</tr>
<tr>
<td>2. (m\angle A + m\angle B = 180^\circ) (m\angle B + m\angle C = 180^\circ)</td>
<td>Definition of supplementary angles</td>
</tr>
<tr>
<td>3. (m\angle A + m\angle B = m\angle B + m\angle C)</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>4. (m\angle A = m\angle C)</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>5. (\angle A \cong \angle C)</td>
<td>(\cong) angles have = measures</td>
</tr>
</tbody>
</table>

Example 1: \(\angle 1 \cong \angle 4 \) and \(\angle C \) and \(\angle F \) are right angles.

Which angles are congruent and why?

Solution: By the Right Angle Theorem, \(\angle C \cong \angle F \). Also, \(\angle 2 \cong \angle 3 \) by the Same Angles Supplements Theorem because \(\angle 1 \cong \angle 4 \) and they are linear pairs with these congruent angles.

Same Angle Complements Theorem: If two angles are complementary to the same angle then the angles are congruent.

\[
\begin{align*}
m\angle A + m\angle B &= 90^\circ \\
m\angle C + m\angle B &= 90^\circ \\
\text{then } m\angle A &= m\angle C.
\end{align*}
\]
The proof of the Same Angles Complements Theorem is in the Review Questions. Use the proof of the Same Angles Supplements Theorem to help you.

Vertical Angles Theorem Recall the Vertical Angles Theorem from Chapter 1. We will do a proof here.

Given: Lines k and m intersect.

Prove: $\angle 1 \cong \angle 3$

![Diagram of intersecting lines with angles 1, 2, 3, and 4 labeled]

Table 2.13:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lines k and m intersect</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle 1$ and $\angle 2$ are a linear pair</td>
<td>Definition of a Linear Pair</td>
</tr>
<tr>
<td>$\angle 2$ and $\angle 3$ are a linear pair</td>
<td></td>
</tr>
<tr>
<td>3. $\angle 1$ and $\angle 2$ are supplementary</td>
<td>Linear Pair Postulate</td>
</tr>
<tr>
<td>$\angle 2$ and $\angle 3$ are supplementary</td>
<td></td>
</tr>
<tr>
<td>4. $m\angle 1 + m\angle 2 = 180^\circ$</td>
<td>Definition of Supplementary Angles</td>
</tr>
<tr>
<td>$m\angle 2 + m\angle 3 = 180^\circ$</td>
<td></td>
</tr>
<tr>
<td>5. $m\angle 1 + m\angle 2 = m\angle 2 + m\angle 3$</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>6. $m\angle 1 = m\angle 3$</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>7. $\angle 1 \cong \angle 3$</td>
<td>\cong angles have = measures</td>
</tr>
</tbody>
</table>

You can also do a proof for $\angle 2 \cong \angle 4$, which would be exactly the same.

Example 2: In the picture $\angle 2 \cong \angle 3$ and $k \perp p$.

Each pair below is congruent. State why.

a) $\angle 1$ and $\angle 5$
b) $\angle 1$ and $\angle 4$
c) $\angle 2$ and $\angle 6$
d) $\angle 6$ and $\angle 7$

![Diagram of intersecting lines with angles 1 to 8 labeled]

Solution:
a) and

b) Same Angles Complements Theorem

c) Vertical Angles Theorem

d) Vertical Angles Theorem followed by the Transitive Property

Example 3: Write a two-column proof.

Given: \(\angle 1 \cong \angle 2 \) and \(\angle 3 \cong \angle 4 \)

Prove: \(\angle 1 \cong \angle 4 \)

![Diagram](image)

Solution:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle 1 \cong \angle 2) and (\angle 3 \cong \angle 4)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle 2 \cong \angle 3)</td>
<td>Vertical Angles Theorem</td>
</tr>
<tr>
<td>3. (\angle 1 \cong \angle 4)</td>
<td>Transitive Property of Congruence (PoC)</td>
</tr>
</tbody>
</table>

Know What? Revisited If \(m\angle 1 = 50^\circ \), then \(m\angle 2 = 50^\circ \).

Draw a perpendicular line at the point of reflection. The laws of reflection state that the angle of incidence is equal to the angle of reflection (see picture). This is an example of the Same Angles Complements Theorem.

Review Questions

Fill in the blanks in the proofs below.

1. **Given:** \(\overline{AC} \perp \overline{BD} \) and \(\angle 1 \cong \angle 4 \) **Prove:** \(\angle 2 \cong \angle 3 \)
2.5. Proofs about Angle Pairs and Segments

Table 2.15:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $AC \perp BD, \angle 1 \cong \angle 4$</td>
<td></td>
</tr>
<tr>
<td>2. $m\angle 1 = m\angle 4$</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>\perp lines create right angles</td>
</tr>
<tr>
<td>4. $m\angle ACB = 90^\circ$</td>
<td></td>
</tr>
<tr>
<td>$m\angle ACD = 90^\circ$</td>
<td></td>
</tr>
<tr>
<td>5. $m\angle 1 + m\angle 2 = m\angle ACB$</td>
<td></td>
</tr>
<tr>
<td>$m\angle 3 + m\angle 4 = m\angle ACD$</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Substitution</td>
</tr>
<tr>
<td>7. $m\angle 1 + m\angle 2 = m\angle 3 + m\angle 4$</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Substitution</td>
</tr>
<tr>
<td>9.</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>10. $\angle 2 \cong \angle 3$</td>
<td></td>
</tr>
</tbody>
</table>

2. **Given:** $\angle MLN \cong \angle OLP$ **Prove:** $\angle MLO \cong \angle NLP$

Table 2.16:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>\cong angles have = measures</td>
</tr>
<tr>
<td>3.</td>
<td>Angle Addition Postulate</td>
</tr>
<tr>
<td>4.</td>
<td>Substitution</td>
</tr>
<tr>
<td>5. $m\angle MLO = m\angle NLP$</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>\cong angles have = measures</td>
</tr>
</tbody>
</table>

3. **Given:** $AE \perp EC$ and $BE \perp ED$ **Prove:** $\angle 1 \cong \angle 3$
Table 2.17:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>$m\angle BED = 90^\circ$</td>
<td>\perp lines create right angles</td>
</tr>
<tr>
<td>$m\angle AEC = 90^\circ$</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Angle Addition Postulate</td>
</tr>
<tr>
<td>5.</td>
<td>Substitution</td>
</tr>
<tr>
<td>6. $m\angle 2 + m\angle 3 = m\angle 1 + m\angle 3$</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>7.</td>
<td>\equiv angles have $= \text{measures}$</td>
</tr>
<tr>
<td>8.</td>
<td></td>
</tr>
</tbody>
</table>

4. **Given:** $\angle L$ is supplementary to $\angle M \angle P$ is supplementary to $\angle O \angle L \equiv \angle O \angle P$ **Prove:** $\angle P \equiv \angle M$

Table 2.18:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. $m\angle L = m\angle O$</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Definition of supplementary angles</td>
</tr>
<tr>
<td>4.</td>
<td>Substitution</td>
</tr>
<tr>
<td>5.</td>
<td>Substitution</td>
</tr>
<tr>
<td>6.</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>7. $\angle M \equiv \angle P$</td>
<td></td>
</tr>
</tbody>
</table>

5. **Given:** $\angle 1 \equiv \angle 4$ **Prove:** $\angle 2 \equiv \angle 3$
2.5. Proofs about Angle Pairs and Segments

Table 2.19:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. $m\angle 1 = m\angle 4$</td>
<td>Definition of a Linear Pair</td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4. $\angle 1$ and $\angle 2$ are supplementary</td>
<td>Definition of supplementary angles</td>
</tr>
<tr>
<td>$\angle 3$ and $\angle 4$ are supplementary</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6. $m\angle 1 + m\angle 2 = m\angle 3 + m\angle 4$</td>
<td></td>
</tr>
<tr>
<td>7. $m\angle 1 + m\angle 2 = m\angle 3 + m\angle 1$</td>
<td></td>
</tr>
<tr>
<td>8. $m\angle 2 = m\angle 3$</td>
<td></td>
</tr>
<tr>
<td>9. $\angle 2 \cong \angle 3$</td>
<td></td>
</tr>
</tbody>
</table>

6. **Given:** $\angle C$ and $\angle F$ are right angles **Prove:** $m\angle C + m\angle F = 180^\circ$

Table 2.20:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. $m\angle C = 90^\circ, m\angle F = 90^\circ$</td>
<td></td>
</tr>
<tr>
<td>3. $90^\circ + 90^\circ = 180^\circ$</td>
<td></td>
</tr>
<tr>
<td>4. $m\angle C + m\angle F = 180^\circ$</td>
<td></td>
</tr>
</tbody>
</table>

7. **Given:** $l \perp m$ **Prove:** $\angle 1 \cong \angle 2$
TABLE 2.21:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (l \perp m)</td>
<td></td>
</tr>
<tr>
<td>2. (\angle 1) and (\angle 2) are right angles</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
</tbody>
</table>

8. **Given:** \(m\angle 1 = 90^\circ \) **Prove:** \(m\angle 2 = 90^\circ \)

TABLE 2.22:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. (\angle 1) and (\angle 2) are a linear pair</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Linear Pair Postulate</td>
</tr>
<tr>
<td>5.</td>
<td>Definition of supplementary angles</td>
</tr>
<tr>
<td>6. (m\angle 2 = 90^\circ)</td>
<td>Substitution</td>
</tr>
</tbody>
</table>

9. **Given:** \(l \perp m \) **Prove:** \(\angle 1 \) and \(\angle 2 \) are complements

TABLE 2.23:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3. (m\angle 1 + m\angle 2 = 90^\circ)</td>
<td>(\perp) lines create right angles</td>
</tr>
<tr>
<td>4. (\angle 1) and (\angle 2) are complementary</td>
<td></td>
</tr>
</tbody>
</table>
10. **Given:** $l \perp m$ and $\angle 2 \cong \angle 6$
Prove: $\angle 6 \cong \angle 5$

![Diagram with angles and lines]

Table 2.24:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. $m\angle 2 = m\angle 6$</td>
<td></td>
</tr>
<tr>
<td>3. $\angle 5 \cong \angle 2$</td>
<td></td>
</tr>
<tr>
<td>4. $m\angle 5 = m\angle 2$</td>
<td></td>
</tr>
<tr>
<td>5. $m\angle 5 = m\angle 6$</td>
<td></td>
</tr>
</tbody>
</table>

Use the picture for questions 11-20.

![Diagram with labeled points]

Given: H is the midpoint of \overline{AE}, \overline{MP} and \overline{GC}
M is the midpoint of \overline{GA}
P is the midpoint of \overline{CE}
$\overline{AE} \cong \overline{GC}$

11. List two pairs of vertical angles.
12. List all the pairs of congruent segments.
13. List two linear pairs that do not have H as the vertex.
14. List a right angle.
15. List a pair of adjacent angles that are NOT a linear pair (do not add up to 180°).
16. What line segment is the perpendicular bisector of \overline{AE}?
17. Name a bisector of \overline{MP}.
18. List a pair of complementary angles.
19. If \overline{GC} is an angle bisector of $\angle AGE$, what two angles are congruent?
20. Find $m\angle GHE$.

For questions 21-25, find the measure of the lettered angles in the picture below.
21. a
22. b
23. c
24. d
25. e (hint: e is complementary with b)

Review Queue Answers

1.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. \overline{VX} is an \angle bisector of $\angle WVY$</td>
<td></td>
</tr>
<tr>
<td>\overline{YY} is an \angle bisector of $\angle XVZ$</td>
<td></td>
</tr>
<tr>
<td>2. $\angle WVX \cong \angle XYV$</td>
<td></td>
</tr>
<tr>
<td>$\angle XYV \cong \angle YVZ$</td>
<td></td>
</tr>
<tr>
<td>3. $\angle WVX \cong \angle YVZ$</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.25:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. \overline{VX} is an \angle bisector of $\angle WVY$</td>
<td>Given</td>
</tr>
<tr>
<td>\overline{YY} is an \angle bisector of $\angle XVZ$</td>
<td></td>
</tr>
<tr>
<td>2. $\angle WVX \cong \angle XYV$</td>
<td>Definition of an angle bisector</td>
</tr>
<tr>
<td>$\angle XYV \cong \angle YVZ$</td>
<td></td>
</tr>
<tr>
<td>3. $\angle WVX \cong \angle YVZ$</td>
<td>Transitive Property</td>
</tr>
</tbody>
</table>
Symbol Toolbox

- \rightarrow if-then
- \therefore therefore
- \sim not

Keywords and Vocabulary

Inductive Reasoning
- Inductive Reasoning
- Conjecture
- Counterexample

Conditional Statements
- Conditional Statement (If-Then Statement)
- Hypothesis
- Conclusion
- Converse
- Inverse
- Contrapositive
- Biconditional Statement

Deductive Reasoning
- Logic
- Deductive Reasoning
- Law of Detachment
- Law of Contrapositive
- Law of Syllogism

Algebraic Congruence Properties
- Reflexive Property of Equality
- Symmetric Property of Equality
- Transitive Property of Equality
- Substitution Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
• Multiplication Property of Equality
• Division Property of Equality
• Distributive Property
• Reflexive Property of Congruence
• Symmetric Property of Congruence
• Transitive Property of Congruence

Proofs about Angle Pairs Segments

• Right Angle Theorem
• Same Angle Supplements Theorem
• Same Angle Complements Theorem

Review

Match the definition or description with the correct word.

1. 5 = x and y + 4 = x, then 5 = y + 4 — A. Law of Contrapositive
2. An educated guess — B. Inductive Reasoning
3. 6(2a + 1) = 12a + 12 — C. Inverse
4. 2, 4, 8, 16, 32, . . . — D. Transitive Property of Equality
5. \(\overline{AB} \cong \overline{CD} \) and \(\overline{CD} \cong \overline{AB} \) — E. Counterexample
6. \(\sim p \rightarrow \sim q \) — F. Conjecture
7. Conclusions drawn from facts. — G. Deductive Reasoning
8. If I study, I will get an “A” on the test. I did not get an A. Therefore, I didn’t study. — H. Distributive Property
9. \(\angle A \) and \(\angle B \) are right angles, therefore \(\angle A \cong \angle B \). — I. Symmetric Property of Congruence
10. 2 disproves the statement: “All prime numbers are odd.” — J. Right Angle Theorem

K. Definition of Right Angles

Texas Instruments Resources

In the CK-12 Texas Instruments Geometry FlexBook® resource, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9687 .
Keywords: Define, write theorems, and/or draw a diagram for each word below.

1st Section: Inductive Reasoning
Inductive Reasoning
Conjecture
Counterexample

Homework:

2nd Section: Conditional Statements
Conditional Statement (If-Then Statement)
Hypothesis
Conclusion
Converse
Inverse
Contrapositive
Biconditional Statement

Homework:

3rd Section: Deductive Reasoning
Logic
Deductive Reasoning
Law of Detachment
Law of Contrapositive
Law of Syllogism

Homework:

4th Section: Algebraic Congruence Properties
Reflexive Property of Equality
Symmetric Property of Equality
Transitive Property of Equality
Substitution Property of Equality
Addition Property of Equality
Subtraction Property of Equality
Multiplication Property of Equality
Division Property of Equality
Distributive Property
Reflexive Property of Congruence
Symmetric Property of Congruence
Transitive Property of Congruence

Homework:

5th Section: Proofs about Angle Pairs, Segments

Right Angle Theorem
Same Angle Supplements Theorem
Same Angle Complements Theorem

Homework:
In this chapter, you will explore the different relationships formed by parallel and perpendicular lines and planes. Different angle relationships will also be explored and what happens when lines are parallel. You will start to prove lines parallel or perpendicular using a fill-in-the-blank 2-column proof. There is also an algebra review of the equations of lines, slopes, and how that relates to parallel and perpendicular lines in geometry.
3.1 Lines and Angles

Learning Objectives

- Define parallel lines, skew lines, and perpendicular planes.
- Understand the Parallel Line Postulate and the Perpendicular Line Postulate.
- Identify angles made by two lines and a transversal.

Review Queue

1. What is the equation of a line with slope -2 and y—intercept 3?
2. What is the slope of the line that passes through (3, 2) and (5, -6)?
3. Find the y—intercept of the line from #2. Write the equation too.
4. Define parallel in your own words.

Know What? To the right is a partial map of Washington DC. The streets are designed on a grid system, where lettered streets, A through Z run east to west and numbered streets, 1st to 30th run north to south. Every state also has its own street that runs diagonally through the city.

Which streets are parallel? Which streets are perpendicular? How do you know?

If you are having trouble viewing this map, look at the interactive map: http://www.travelguide.tv/washington/map.html

Defining Parallel and Skew

Parallel: Two or more lines that lie in the same plane and never intersect.
3.1. Lines and Angles

To show that lines are parallel, arrows are used.

Table 3.1:

<table>
<thead>
<tr>
<th>Label It</th>
<th>Say It</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\overrightarrow{AB} \parallel \overrightarrow{MN}$</td>
<td>Line AB is parallel to line MN</td>
</tr>
<tr>
<td>$l \parallel m$</td>
<td>Line l is parallel to line m.</td>
</tr>
</tbody>
</table>

Lines must be marked parallel with the arrows in order to say they are parallel. Just because two lines LOOK parallel, does not mean that they are.

Recall the definition of perpendicular from Chapter 1. Two lines are perpendicular when they intersect to form a 90° angle. Below $l \perp AB$.

In the definitions of parallel and perpendicular, the word “line,” is used. Line segments, rays and planes can also be parallel or perpendicular.

The image to the left shows two parallel planes, with a third blue plane that is perpendicular to both of them.

An example of parallel planes could be the top of a table and the floor. The legs would be in perpendicular planes to the table top and the floor.

Skew lines: Lines that are in different planes and never intersect.

In the cube:
- \overline{AB} and \overline{FH} are skew
- \overline{AC} and \overline{EF} are skew
Example 1: Using the cube above, list:

(a) A pair of parallel planes
(b) A pair of perpendicular planes
(c) A pair of skew lines.

Solution: Remember, you only need to use three points to label a plane. Below are answers, but there are other possibilities too.

(a) Planes ABC and EFG
(b) Planes ABC and CDH
(c) BD and CG

Parallel Line Postulate

Parallel Postulate: For any line and a point not on the line, there is one line parallel to this line through the point.

There are infinitely many lines that go through A, but only one that is parallel to l.

Investigation 3-1: Patty Paper and Parallel Lines

Tools Needed: Patty paper, pencil, ruler

1. Get a piece of patty paper (a translucent square piece of paper). Draw a line and a point above the line.
2. Fold up the paper so that the line is over the point. Crease the paper and unfold.

3. Are the lines parallel?
Yes. This investigation duplicates the line we drew in #1 over the point. This means that there is only one parallel line through this point.

Perpendicular Line Postulate

Perpendicular Line Postulate: For any line and a point not on the line, there is one line perpendicular to this line passing through the point.

There are infinitely many lines that pass through A, but only one that is perpendicular to \(l\).

Investigation 3-2: Perpendicular Line Construction; through a Point NOT on the Line

Tools Needed: Pencil, paper, ruler, compass

1. Draw a horizontal line and a point above that line. Label the line \(l\) and the point \(A\).

2. Take the compass and put the pointer on \(A\). Open the compass so that it reaches past line \(l\). Draw an arc that intersects the line twice.
3. Move the pointer to one of the arc intersections. Widen the compass a little and draw an arc below the line. Repeat this on the other side so that the two arc marks intersect.

![Diagram]

4. Take your straightedge and draw a line from point A to the arc intersections below the line. This line is perpendicular to l and passes through A.

![Diagram]

To see a demonstration of this construction, go to:

http://www.mathsisfun.com/geometry/construct-perpnotline.html

Investigation 3-3: Perpendicular Line Construction; through a Point on the Line

Tools Needed: Pencil, paper, ruler, compass

1. Draw a horizontal line and a point on that line. Label the line l and the point A.

![Diagram]

2. Take the compass and put the pointer on A. Open the compass so that it reaches out horizontally along the line. Draw two arcs that intersect the line on either side of the point.

![Diagram]

3. Move the pointer to one of the arc intersections. Widen the compass a little and draw an arc above or below the line. Repeat this on the other side so that the two arc marks intersect.
4. Take your straightedge and draw a line from point A to the arc intersections above the line. This line is perpendicular to l and passes through A.

To see a demonstration of this construction, go to:
http://www.mathsisfun.com/geometry/construct-perponline.html

Example 2: Construct a perpendicular line through the point below.

Solution: Even though the point is below the line, the construction is the same as Investigation 3-2. However, draw the arc marks in step 3 *above* the line.
The area *between* l and m is the *interior*.

The area *outside* l and m is the *exterior*.

Looking at t, l and m, there are 8 angles formed. They are labeled below.

There are 8 linear pairs and 4 vertical angle pairs.

An example of a linear pair would be $\angle 1$ and $\angle 2$.

An example of vertical angles would be $\angle 5$ and $\angle 8$.

Example 3: List all the other linear pairs and vertical angle pairs in the picture above.

Solution:

Linear Pairs: $\angle 2$ and $\angle 4$, $\angle 3$ and $\angle 4$, $\angle 1$ and $\angle 3$, $\angle 5$ and $\angle 6$, $\angle 6$ and $\angle 8$, $\angle 7$ and $\angle 8$, $\angle 5$ and $\angle 7$

Vertical Angles: $\angle 1$ and $\angle 4$, $\angle 2$ and $\angle 3$, $\angle 6$ and $\angle 7$

There are also 4 new angle relationships.

Corresponding Angles: Two angles that are on the same side of the transversal and the two different lines. Imagine sliding the four angles formed with line l down to line m. The angles which match up are corresponding.

Above, $\angle 2$ and $\angle 6$ are corresponding angles.

Alternate Interior Angles: Two angles that are on the interior of l and m, but on opposite sides of the transversal.
3.1. Lines and Angles

Above, \(\angle 3 \) and \(\angle 5 \) are alternate exterior angles.

Alternate Exterior Angles: Two angles that are on the exterior of \(l \) and \(m \), but on opposite sides of the transversal.

Above, \(\angle 2 \) and \(\angle 7 \) are alternate exterior angles.

Same Side Interior Angles: Two angles that are on the same side of the transversal and on the interior of the two lines.

Above, \(\angle 3 \) and \(\angle 5 \) are same side interior angles.

Example 4: Using the picture above, list all the other pairs of each of the newly defined angle relationships.

Solution:

Corresponding Angles: \(\angle 3 \) and \(\angle 7 \), \(\angle 1 \) and \(\angle 5 \), \(\angle 4 \) and \(\angle 8 \)
Alternate Interior Angles: \(\angle 4 \) and \(\angle 5 \)
Alternate Exterior Angles: \(\angle 2 \) and \(\angle 7 \)
Same Side Interior Angles: \(\angle 4 \) and \(\angle 6 \)

Example 5: For the picture below, determine:
(a) A corresponding angle to $\angle 3$?

(b) An alternate interior angle to $\angle 7$?

(c) An alternate exterior angle to $\angle 4$?

Solution:

(a) $\angle 1$

(b) $\angle 2$

(c) $\angle 5$

Know What? Revisited For Washington DC, all of the lettered and numbered streets are parallel. The lettered streets are perpendicular to the numbered streets. We do not have enough information about the state-named streets to say if they are parallel or perpendicular.

Review Questions

- Questions 1-3 use the definitions of parallel, perpendicular, and skew lines.
- Question 4 asks about the Parallel Line Postulate and the Perpendicular Line Postulate.
- Questions 5-9 use the definitions learned in this section and are similar to Example 1.
- Questions 10-20 are similar to Examples 4 and 5.
- Question 21 is similar to Example 2 and Investigation 3-2.
- Questions 22-30 are Algebra I review.

1. Which of the following is the best example of parallel lines?

 a. Railroad Tracks

 b. Lamp Post and a Sidewalk

 c. Longitude on a Globe

 d. Stonehenge (the stone structure in Scotland)

2. Which of the following is the best example of perpendicular lines?

 a. Latitude on a Globe

 b. Opposite Sides of a Picture Frame

 c. Fence Posts

 d. Adjacent Sides of a Picture Frame

3. Which of the following is the best example of skew lines?

 a. Roof of a Home

 b. Northbound Freeway and an Eastbound Overpass

 c. Longitude on a Globe

 d. The Golden Gate Bridge
4. **Writing** What is the difference between the Parallel Line Postulate and the Perpendicular Line Postulate? How are they similar?

Use the figure below to answer questions 5-9. The two pentagons are parallel and all of the rectangular sides are perpendicular to both of them.

![Diagram of two pentagons with parallel and perpendicular sides](image)

5. Find two pairs of skew lines.
6. List a pair of parallel lines.
7. List a pair of perpendicular lines.
8. For AB, how many perpendicular lines would pass through point V? Name this line.
9. For XY, how many parallel lines would pass through point D? Name this line.

For questions 10-16, use the picture below.

![Diagram with labeled angles](image)

10. What is the corresponding angle to $\angle 4$?
11. What is the alternate interior angle with $\angle 5$?
12. What is the corresponding angle to $\angle 8$?
13. What is the alternate exterior angle with $\angle 7$?
14. What is the alternate interior angle with $\angle 4$?
15. What is the same side interior angle with $\angle 3$?
16. What is the corresponding angle to $\angle 1$?

Use the picture below for questions 17-20.

![Diagram with labeled angles](image)
17. If $m \angle 2 = 55^\circ$, what other angles do you know?
18. If $m \angle 5 = 123^\circ$, what other angles do you know?
19. If $t \perp l$, is $t \perp m$? Why or why not?
20. Is $l \parallel m$? Why or why not?
21. **Construction** Draw a line and a point not on the line. Construct a perpendicular line to the one you drew.

Algebra Review Find the slope of the line between the two points, $\frac{y_2 - y_1}{x_2 - x_1}$.

22. $(-3, 2)$ and $(-2, 1)$
23. $(5, -9)$ and $(0, 1)$
24. $(2, -7)$ and $(5, 2)$
25. $(8, 2)$ and $(-1, 5)$
26. Find the equation of the line from #22. Recall that the equation of a line is $y = mx + b$, where m is the slope and b is the y–intercept.
27. Find the equation of the line from #23.
28. Find the equation of the line from #24.
29. Is the line $y = -x + 3$ parallel to the line in #26? How do you know?
30. Is the line $y = -x + 3$ perpendicular to the line in #26? How do you know?

Review Queue Answers

1. $y = -2x + 3$
2. $m = \frac{-6 - 2}{5 - 3} = \frac{-8}{2} = -4$
3.
 \[2 = -4(3) + b\]
 \[2 = -12 + b\]
 \[-14 = b\]
 \[y = -4x + 14\]
4. Something like: Two lines that never touch or intersect and in the same plane. If we do not say “in the same plane,” this definition could include skew lines.
3.2 Properties of Parallel Lines

Learning Objectives

- Determine what happens to corresponding angles, alternate interior angles, alternate exterior angles, and same side interior angles when two lines are parallel.

Review Queue

Use the picture below to determine:

1. A pair of corresponding angles.
2. A pair of alternate interior angles.
3. A pair of alternate exterior angles.
4. A pair of same side interior angles.

Know What? The streets below are in Washington DC. The red street and the blue street are parallel. The transversals are the green and orange streets.

1. If $\angle FTS = 35^\circ$, determine the other angles that are 35°.
2. If $\angle SQV = 160^\circ$, determine the other angles that are 160°.
Corresponding Angles Postulate

Corresponding Angles Postulate: If two parallel lines are cut by a transversal, then the corresponding angles are congruent.

![Diagram](image)

If \(l \parallel m\), then \(\angle 1 \cong \angle 2\).

Example 1: If \(a \parallel b\), which pairs of angles are congruent by the Corresponding Angles Postulate?

![Diagram](image)

Solution: There are 4 pairs of congruent corresponding angles:

\(\angle 1 \cong \angle 5\), \(\angle 2 \cong \angle 6\), \(\angle 3 \cong \angle 7\), and \(\angle 4 \cong \angle 8\).

Investigation 3-4: Corresponding Angles Exploration

1. Place your ruler on the paper. On either side of the ruler, draw 2 lines, 3 inches long. This is the easiest way to ensure that the lines are parallel.

2. Remove the ruler and draw a transversal. Label the eight angles as shown.
3. Using your protractor, measure all of the angles. What do you notice?

You should notice that all the corresponding angles have equal measures.

Example 2: If \(\angle 2 = 76^\circ \), what is \(\angle 6 \)?

Solution: \(\angle 2 \) and \(\angle 6 \) are corresponding angles and \(l \parallel m \) from the arrows on them. \(\angle 2 \cong \angle 6 \) by the Corresponding Angles Postulate, which means that \(\angle 6 = 76^\circ \).

Example 3: Using the measures of \(\angle 2 \) and \(\angle 6 \) from Example 2, find all the other angle measures.

Solution: If \(\angle 2 = 76^\circ \), then \(\angle 1 = 180^\circ - 76^\circ = 104^\circ \) (linear pair). \(\angle 3 \cong \angle 2 \) (vertical angles), so \(\angle 3 = 76^\circ \). \(\angle 4 = 104^\circ \) (vertical angle with \(\angle 1 \)).

By the Corresponding Angles Postulate, we know \(\angle 1 \cong \angle 5 \), \(\angle 2 \cong \angle 6 \), \(\angle 3 \cong \angle 7 \), and \(\angle 4 \cong \angle 8 \), so \(\angle 5 = 104^\circ \), \(\angle 6 = 76^\circ \), \(\angle 7 = 76^\circ \), and \(\angle 104^\circ \).

Alternate Interior Angles Theorem

Example 4: Find \(\angle 1 \).

Solution: \(\angle 2 = 115^\circ \) because they are corresponding angles and the lines are parallel. \(\angle 1 \) and \(\angle 2 \) are vertical angles, so \(\angle 1 = 115^\circ \).

Alternate Interior Angles Theorem: If two parallel lines are cut by a transversal, then the alternate interior angles are congruent.
If $l \parallel m$, then $\angle 1 \cong \angle 2$

Proof of Alternate Interior Angles Theorem

Given: $l \parallel m$

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $l \parallel m$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle 3 \cong \angle 7$</td>
<td>Corresponding Angles Postulate</td>
</tr>
<tr>
<td>3. $\angle 7 \cong \angle 6$</td>
<td>Vertical Angles Theorem</td>
</tr>
<tr>
<td>4. $\angle 3 \cong \angle 6$</td>
<td>Transitive PoC</td>
</tr>
</tbody>
</table>

We could have also proved that $\angle 4 \cong \angle 5$.

Example 5: Algebra Connection Find the measure of x.

Solution: The two given angles are alternate interior angles and equal.
3.2. Properties of Parallel Lines

Alternate Exterior Angles Theorem

Example 6: Find $m \angle 1$ and $m \angle 2$.

Solution: $m \angle 1 = 47^\circ$ by vertical angles. The lines are parallel, so $m \angle 2 = 47^\circ$ by the Corresponding Angles Postulate. Here, $\angle 1$ and $\angle 2$ are alternate exterior angles.

Alternate Exterior Angles Theorem: If two parallel lines are cut by a transversal, then the alternate exterior angles are congruent.

If $l \parallel m$, then $\angle 1 \cong \angle 2$.

Example 7: Algebra Connection Find the measure of each angle and the value of y.

Solution: The angles are alternate exterior angles. Because the lines are parallel, the angles are equal.
\[(3y + 53)^\circ = (7y - 55)^\circ\]
\[108^\circ = 4y\]
\[27^\circ = y\]

If \(y = 27^\circ\), then each angle is \(3(27^\circ) + 53^\circ = 134^\circ\).

Same Side Interior Angles Theorem

Same side interior angles are on the interior of the parallel lines and on the same side of the transversal. They have a different relationship than the other angle pairs.

Example 8: Find \(m \angle 2\).

\[
\begin{align*}
\angle 1 \text{ and } 66^\circ \text{ are alternate interior angles, so } m \angle 1 &= 66^\circ. \\
\angle 1 \text{ and } \angle 2 \text{ are a linear pair, so they add up to } 180^\circ.
\end{align*}
\]

\[
\begin{align*}
m \angle 1 + m \angle 2 &= 180^\circ \\
66^\circ + m \angle 2 &= 180^\circ \\
m \angle 2 &= 114^\circ
\end{align*}
\]

This example shows that if two parallel lines are cut by a transversal, the same side interior angles add up to 180\(^\circ\).

Same Side Interior Angles Theorem: If two parallel lines are cut by a transversal, then the same side interior angles are supplementary.

If \(l \parallel m\), then \(m \angle 1 + m \angle 2 = 180^\circ\).

Example 9: Find \(x, y,\) and \(z\).
Solution: $x = 73^\circ$ by Alternate Interior Angles

$y = 107^\circ$ because it is a linear pair with x.

$z = 64^\circ$ by Same Side Interior Angles.

Example 10: Algebra Connection Find the measure of x.

Solution: The given angles are same side interior angles. Because the lines are parallel, the angles add up to 180°.

\[
(2x + 43)^\circ + (2x - 3)^\circ = 180^\circ \\
4x + 40^\circ = 180^\circ \\
4x = 140^\circ \\
x = 35^\circ
\]

Example 11: $l \parallel m$ and $s \parallel t$. Explain how $\angle 1 \cong \angle 16$.

Solution: Because $\angle 1$ and $\angle 16$ are not on the same transversal, we cannot assume they are congruent.

$\angle 1 \cong \angle 3$ by Corresponding Angles

$\angle 3 \cong \angle 16$ by Alternate Exterior Angles
\(\angle 1 \cong \angle 16 \) by the Transitive Property

Know What? Revisited Using what we have learned in this lesson, the other angles that are 35° are \(\angle TLQ, \angle ETL \), and the vertical angle with \(\angle TLQ \). The other angles that are 160° are \(\angle FSR, \angle TSQ \), and the vertical angle with \(\angle SQV \).

Review Questions

- Questions 1-7 use the theorems learned in this section.
- Questions 8-16 are similar to Example 11.
- Questions 17-20 are similar to Example 6, 8 and 9.
- Questions 21-25 are similar to Examples 5, 7, and 10.
- Questions 26-29 are similar to the proof of the Alternate Interior Angles Theorem.
- Question 30 uses the theorems learned in this section.

For questions 1-7, determine if each angle pair below is congruent, supplementary or neither.

1. \(\angle 1 \) and \(\angle 7 \)
2. \(\angle 4 \) and \(\angle 2 \)
3. \(\angle 6 \) and \(\angle 3 \)
4. \(\angle 5 \) and \(\angle 8 \)
5. \(\angle 1 \) and \(\angle 6 \)
6. \(\angle 4 \) and \(\angle 6 \)
7. \(\angle 2 \) and \(\angle 3 \)

For questions 8-16, determine if the angle pairs below are: Corresponding Angles, Alternate Interior Angles, Alternate Exterior Angles, Same Side Interior Angles, Vertical Angles, Linear Pair or None.

8. \(\angle 2 \) and \(\angle 13 \)
9. \(\angle 7 \) and \(\angle 12 \)
10. \(\angle 1 \) and \(\angle 11 \)
11. \(\angle 6 \) and \(\angle 10 \)
12. \(\angle 14 \) and \(\angle 9 \)
13. \(\angle 3 \) and \(\angle 11 \)
14. \(\angle 4 \) and \(\angle 15 \)
15. \(\angle 5 \) and \(\angle 16 \)
16. List all angles congruent to \(\angle 8 \).

For 17-20, find the values of \(x \) and \(y \).

26. \text{Given: } l || m
Prove: \(\angle 3 \) and \(\angle 5 \) are supplementary (Same Side Interior Angles Theorem)

Table 3.3:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Given</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle 1 \cong \angle 5)</td>
<td>(\cong) angles have = measures</td>
</tr>
<tr>
<td>3.</td>
<td>Linear Pair Postulate</td>
</tr>
<tr>
<td>4.</td>
<td>Definition of Supplementary Angles</td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6. (m\angle 3 + m\angle 5 = 180^\circ)</td>
<td></td>
</tr>
<tr>
<td>7. (\angle 3) and (\angle 5) are supplementary</td>
<td></td>
</tr>
</tbody>
</table>

27. Given: \(l \parallel m \)

Prove: \(\angle 1 \cong \angle 8 \) (Alternate Exterior Angles Theorem)

Table 3.4:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Vertical Angles Theorem</td>
</tr>
<tr>
<td>2. (\angle 1 \cong \angle 5)</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4. (\angle 1 \cong \angle 8)</td>
<td></td>
</tr>
</tbody>
</table>

For 28 and 29, use the picture to the right.
28. Given: \(l \parallel m, s \parallel t\) \(\text{Prove: } \angle 2 \cong \angle 15\)

Table 3.5:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (l \parallel m, s \parallel t)</td>
<td></td>
</tr>
<tr>
<td>2. (\angle 2 \cong \angle 13)</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Corresponding Angles Postulate</td>
</tr>
<tr>
<td>4. (\angle 2 \cong \angle 15)</td>
<td></td>
</tr>
</tbody>
</table>

29. Given: \(l \parallel m, s \parallel t\) \(\text{Prove: } \angle 4\) and \(\angle 9\) are supplementary

Table 3.6:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. (\angle 6 \cong \angle 9)</td>
<td></td>
</tr>
<tr>
<td>3. (\angle 4 \cong \angle 7)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Same Side Interior Angles</td>
</tr>
<tr>
<td>5. (\angle 9) and (\angle 4) are supplementary</td>
<td></td>
</tr>
</tbody>
</table>

30. Find the measures of all the numbered angles in the figure below.

Review Queue Answers

1. \(\angle 1\) and \(\angle 6\), \(\angle 2\) and \(\angle 8\), \(\angle 3\) and \(\angle 7\), or \(\angle 4\) and \(\angle 5\)
2. \(\angle 2\) and \(\angle 5\) or \(\angle 3\) and \(\angle 6\)
3. \(\angle 1\) and \(\angle 7\) or \(\angle 4\) and \(\angle 8\)
4. \(\angle 3\) and \(\angle 5\) or \(\angle 2\) and \(\angle 6\)
3.3 Proving Lines Parallel

Learning Objectives

- Use the *converses* of the Corresponding Angles Postulate, Alternate Interior Angles Theorem, Alternate Exterior Angles Theorem, and the Consecutive Interior Angles Theorem to show that lines are parallel.
- Construct parallel lines using the above converses.
- Use the Parallel Lines Property.

Review Queue

Answer the following questions.

1. Write the converse of the following statements:
 a. *If it is summer, then I am out of school.*
 b. *I will go to the mall when I am done with my homework.*

2. Are any of the converses from #1 true? Give a counterexample, if not.

3. Determine the value of \(x \) if \(l \parallel m \).

4. What is the measure of each angle in #3?

Know What? Here is a picture of the support beams for the Coronado Bridge in San Diego. To aid the strength of the curved bridge deck, the support beams should not be parallel.

![Support beams](image)

This bridge was designed so that \(\angle 1 = 92^\circ \) and \(\angle 2 = 88^\circ \). Are the support beams parallel?
3.3. Proving Lines Parallel

Corresponding Angles Converse

Recall that the converse of

If \(a\), then \(b\) is

If \(b\), then \(a\)

For the Corresponding Angles Postulate:

If two lines are parallel, then the corresponding angles are congruent.

BECOMES

If corresponding angles are congruent, then the two lines are parallel.

Is this true? If corresponding angles are both \(60^\circ\), would the lines be parallel?

If

then, is \(l || m\)?

YES. Congruent corresponding angles make the slopes of \(l\) and \(m\) the same which makes the lines parallel.

Investigation 3-5: Creating Parallel Lines using Corresponding Angles

1. Draw two intersecting lines. Make sure they are not perpendicular. Label them \(l\) and \(m\), and the point of intersection, \(A\), as shown.

2. Create a point, \(B\), on line \(m\), above \(A\).
3. Copy the acute angle at A (the angle to the right of m) at point B. See Investigation 2-2 in Chapter 2 for the directions on how to copy an angle.

4. Draw the line from the arc intersections to point B.

The copied angle allows the line through point B to have the same slope as line l, making the two lines parallel.

Converse of Corresponding Angles Postulate: If corresponding angles are congruent when two lines are cut by a transversal, then the lines are parallel.

If

then $l \parallel m$.

Example 1: If $m \angle 8 = 110^\circ$ and $m \angle 4 = 110^\circ$, then what do we know about lines l and m?
Solution: \(\angle 8 \) and \(\angle 4 \) are corresponding angles. Since \(m\angle 8 = m\angle 4 \), we can conclude that \(l \parallel m \).

Example 2: Is \(l \parallel m \)?

\[
\begin{align*}
116^\circ & \neq 118^\circ, \text{ so } l \text{ is not parallel to } m.
\end{align*}
\]

Alternate Interior Angles Converse

The converse of the Alternate Interior Angles Theorem is:

Converse of Alternate Interior Angles Theorem: If two lines are cut by a transversal and alternate interior angles are congruent, then the lines are parallel.

If

then \(l \parallel m \).

Example 3: Prove the Converse of the Alternate Interior Angles Theorem.
Given: \(l\) and \(m\) and transversal \(t\)
\(\angle 3 \cong \angle 6\)
Prove: \(l\parallel m\)

Solution:

Table 3.7:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (l) and (m) and transversal (t) (\angle 3 \cong \angle 6)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle 3 \cong \angle 2)</td>
<td>Vertical Angles Theorem</td>
</tr>
<tr>
<td>3. (\angle 2 \cong \angle 6)</td>
<td>Transitive PoC</td>
</tr>
<tr>
<td>4. (l\parallel m)</td>
<td>Converse of the Corresponding Angles Postulate</td>
</tr>
</tbody>
</table>

Prove Move: Shorten the names of these theorems. For example, the Converse of the Corresponding Angles Postulate could be “Conv CA Post.”

Example 4: Is \(l\parallel m\)?

![Diagram](Image)

Solution: Find \(m\angle 1\). We know its linear pair is 109°, so they add up to 180°.

\[
m\angle 1 + 109^\circ = 180^\circ\]
\[
m\angle 1 = 71^\circ.
\]

This means \(l\parallel m\).

Example 5: Algebra Connection What does \(x\) have to be to make \(a\parallel b\)?

Solution: The angles are alternate interior angles, and must be equal for \(a\parallel b\). Set the expressions equal to each other and solve.

![Diagram](Image)

\[3x + 16^\circ = 5x - 54^\circ\]
\[70^\circ = 2x\]
\[35^\circ = x\]
To make \(a \parallel b \), \(x = 35^\circ \).

Converse of Alternate Exterior Angles Consecutive Interior Angles

You have probably guessed that the converse of the Alternate Exterior Angles Theorem and the Consecutive Interior Angles Theorem are true.

Converse of the Alternate Exterior Angles Theorem: If two lines are cut by a transversal and the alternate exterior angles are congruent, then the lines are parallel.

If

Then \(l \parallel m \).

Example 6: Real-World Situation The map below shows three roads in Julio’s town.

Julio used a surveying tool to measure two angles at the intersections in this picture he drew (NOT to scale). *Julio wants to know if Franklin Way is parallel to Chavez Avenue.*

Solution: The 130° angle and \(\angle a \) are alternate exterior angles. If \(m \angle a = 130^\circ \), then the lines are parallel.

\[
\angle a + 40^\circ = 180^\circ \quad \text{by the Linear Pair Postulate}
\]

\[
\angle a = 140^\circ
\]

140° \(\neq \) 130°, so Franklin Way and Chavez Avenue are not parallel streets.

The final converse theorem is the Same Side Interior Angles Theorem. Remember that these angles aren’t congruent when lines are parallel, they **add up to** 180°.

Converse of the Same Side Interior Angles Theorem: If two lines are cut by a transversal and the same side interior angles are supplementary, then the lines are parallel.

If
then \(l \parallel m\).

Example 7: Is \(l \parallel m\)? How do you know?

Solution: These angles are Same Side Interior Angles. So, if they add up to 180°, then \(l \parallel m\).

\[
113° + 67° = 180°, \text{ therefore } l \parallel m.
\]

Parallel Lines Property

The Parallel Lines Property is a transitive property for parallel lines. The Transitive Property of Equality is: If \(a = b\) and \(b = c\), then \(a = c\). The Parallel Lines Property changes \(=\) to \(\parallel\).

Parallel Lines Property: If lines \(l \parallel m\) and \(m \parallel n\), then \(l \parallel n\).

If

then
Example 8: Are lines q and r parallel?

Solution: First find if $p \parallel q$, then $p \parallel r$. If so, $q \parallel r$.

$p \parallel q$ because the corresponding angles are equal.

$p \parallel r$ because the alternate exterior angles are equal.

$q \parallel r$ by the Parallel Lines Property.

Know What? Revisited: $\angle 1$ and $\angle 2$ are corresponding angles and must be equal for the beams to be parallel. $\angle 1 = 92^\circ$ and $\angle 2 = 88^\circ$, so they are not equal and the beams are not parallel, therefore the bridge is study and safe.

Review Questions

1. Are lines l and m parallel? If yes, how do you know?
2. Are lines 1 and 2 parallel? Why or why not?

3. Are the lines below parallel? Why or why not?

4. Are the lines below parallel? Justify your answer.

5. Are the lines below parallel? Justify your answer.

Use the following diagram. \(m \parallel n \) and \(p \perp q \). Find each angle and give a reason for each answer.

6. \(a = \) _____
3.3. Proving Lines Parallel

7. \(b = \) __________
8. \(c = \) __________
9. \(d = \) __________
10. \(e = \) __________
11. \(f = \) __________
12. \(g = \) __________
13. \(h = \) __________

14. **Construction** Using Investigation 3-1 to help you, show that two lines are parallel by constructing congruent alternate interior angles. HINT: Steps 1 and 2 will be the same, but at step 3, you will copy the angle in a different spot.

15. **Writing** Explain when you would use the Corresponding Angles Postulate and the Converse of the Corresponding Angles Postulate in a proof.

For Questions 16-22, fill in the blanks in the proofs below.

16. **Given:** \(l \parallel m, p \parallel q \) **Prove:** \(\angle 1 \cong \angle 2 \)

![Diagram](image)

Table 3.8:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (l \parallel m)</td>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
<td>2. Corresponding Angles Postulate</td>
</tr>
<tr>
<td>3. (p \parallel q)</td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>4.</td>
</tr>
<tr>
<td>5. (\angle 1 \cong \angle 2)</td>
<td>5.</td>
</tr>
</tbody>
</table>

17. **Given:** \(p \parallel q, \angle 1 \cong \angle 2 \) **Prove:** \(l \parallel m \)

![Diagram](image)

Table 3.9:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (p \parallel q)</td>
<td>1.</td>
</tr>
</tbody>
</table>
TABLE 3.9: (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. (\angle 1 \cong \angle 2)</td>
<td>2. Corresponding Angles Postulate</td>
</tr>
<tr>
<td>3. (\angle 1 \cong \angle 2)</td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>4. Transitive PoC</td>
</tr>
<tr>
<td>5.</td>
<td>5. Converse of Alternate Interior Angles Theorem</td>
</tr>
</tbody>
</table>

18. Given: \(\angle 1 \cong \angle 2, \angle 3 \cong \angle 4\) Prove: \(l \parallel m\)

![Diagram of parallel lines](image1)

TABLE 3.10:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle 1 \cong \angle 2)</td>
<td>1.</td>
</tr>
<tr>
<td>2. (l \parallel n)</td>
<td>2.</td>
</tr>
<tr>
<td>3. (\angle 3 \cong \angle 4)</td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>4. Converse of Alternate Interior Angles Theorem</td>
</tr>
<tr>
<td>5. (l \parallel m)</td>
<td>5.</td>
</tr>
</tbody>
</table>

19. Given: \(m \perp l, n \perp l\) Prove: \(m \parallel n\)

![Diagram of perpendicular lines](image2)

TABLE 3.11:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (m \perp l, n \perp l)</td>
<td></td>
</tr>
<tr>
<td>2. (m \angle 1 = 90^\circ, m \angle 2 = 90^\circ)</td>
<td>Transitive Property</td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4. (m \parallel n)</td>
<td></td>
</tr>
</tbody>
</table>

20. Given: \(\angle 1 \cong \angle 3\) Prove: \(\angle 1\) and \(\angle 4\) are supplementary
Table 3.12:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. (m \parallel n)</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Linear Pair Postulate</td>
</tr>
<tr>
<td>4.</td>
<td>Substitution</td>
</tr>
<tr>
<td>5. (\angle 1) and (\angle 4) are supplementary</td>
<td></td>
</tr>
</tbody>
</table>

21. **Given:** \(\angle 2 \cong \angle 4 \) **Prove:** \(\angle 1 \cong \angle 3 \)

Table 3.13:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. (m \parallel n)</td>
<td></td>
</tr>
<tr>
<td>3. (\angle 1 \cong \angle 3)</td>
<td></td>
</tr>
</tbody>
</table>

22. **Given:** \(\angle 2 \cong \angle 3 \) **Prove:** \(\angle 1 \cong \angle 4 \)
In 23-29, use the given information to determine which lines are parallel. If there are none, write none. Consider each question individually.

23. \(\angle BDC \cong \angle JIL \)
24. \(\angle AFD \) and \(\angle BDF \) are supplementary
25. \(\angle EAF \cong \angle FJI \)
26. \(\angle EFJ \cong \angle FJK \)
27. \(\angle DIE \cong \angle EAF \)
28. \(\angle EDB \cong \angle KJM \)
29. \(\angle DIJ \) and \(\angle FJI \) are supplementary

In 30-36, find the measure of the lettered angles below.
3.3. Proving Lines Parallel

30. \(m_\angle 1 \)
31. \(m_\angle 2 \)
32. \(m_\angle 3 \)
33. \(m_\angle 4 \)
34. \(m_\angle 5 \)
35. \(m_\angle 6 \)
36. \(m_\angle 7 \)

Algebra Connection For 37-40, what does \(x \) have to measure to make the lines parallel?

![Diagram of parallel lines with angles labeled 1 through 8]

37. \(m_\angle 3 = (3x + 25)^\circ \) and \(m_\angle 5 = (4x - 55)^\circ \)
38. \(m_\angle 2 = (8x)^\circ \) and \(m_\angle 7 = (11x - 36)^\circ \)
39. \(m_\angle 1 = (6x - 5)^\circ \) and \(m_\angle 5 = (5x + 7)^\circ \)
40. \(m_\angle 4 = (3x - 7)^\circ \) and \(m_\angle 7 = (5x - 21)^\circ \)

Review Queue Answers

1.
 a. *If I am out of school, then it is summer.*
 b. *If I go to the mall, then I am done with my homework.*

2.
 a. Not true, I could be out of school on any school holiday or weekend during the school year.
 b. Not true, I don’t have to be done with my homework to go to the mall.

3. The two angles are supplementary.

 \[
 (17x + 14)^\circ + (4x - 2)^\circ = 180^\circ \\
 21x + 12^\circ = 180^\circ \\
 21x = 168^\circ \\
 x = 8^\circ
 \]

4. The angles are \(17(8^\circ) + 14^\circ = 150^\circ \) and \(180^\circ - 150^\circ = 30^\circ \)
3.4 Properties of Perpendicular Lines

Learning Objectives

- Understand the properties of perpendicular lines.

Review Queue

1. Draw a picture of two parallel lines, \(l \) and \(m \), and a transversal that is perpendicular to \(l \). Is the transversal perpendicular to \(m \) too?
2. \(m\angle A = 35^\circ \) and is complementary to \(\angle B \). What is \(m\angle B \)?
3. \(m\angle C = 63^\circ \) and is complementary to \(\angle D \). What is \(m\angle D \)?
4. Draw a picture of a linear pair where the angles are congruent. What is the measure of each angle?

Know What? There are several examples of slope in nature. To the right are pictures of Half Dome, in Yosemite National Park and the horizon over the Pacific Ocean. These are examples of horizontal and vertical lines in real life. What is the slope of these lines?

Congruent Linear Pairs

A linear pair is a pair of adjacent angles whose outer sides form a straight line. The Linear Pair Postulate says that the angles in a linear pair add up to 180\(^\circ\). What happens when the angles in a linear pair are congruent?
If a linear pair is congruent, the angles are both 90°.

Example 1: Determine the measure of $\angle SGD$ and $\angle OGD$.

Solution: The angles are congruent and form a linear pair. Both angles are 90°.

Example 2: Find $m\angle CTA$.

Solution: These two angles form a linear pair and $\angle STC$ is a right angle.

\[
m\angle STC = 90^\circ \\
m\angle CTA = 180^\circ - 90^\circ = 90^\circ
\]

Perpendicular Transversals

When two lines intersect, four angles are created. If the two lines are perpendicular, then all four angles are right angles, even though only one needs to be marked. All four angles are also 90°.
If $l \parallel m$ and $n \perp l$, is $n \perp m$?

Example 3: Write a 2-column proof.

Given: $l \parallel m$, $l \perp n$

Prove: $n \perp m$

Solution:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $l \parallel m$, $l \perp n$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$ are right angles</td>
<td>Definition of perpendicular lines</td>
</tr>
<tr>
<td>3. $m \angle 1 = 90^\circ$</td>
<td>Definition of a right angle</td>
</tr>
<tr>
<td>4. $m \angle 1 = m \angle 5$</td>
<td>Corresponding Angles Postulate</td>
</tr>
<tr>
<td>5. $m \angle 5 = 90^\circ$</td>
<td>Transitive PoE</td>
</tr>
<tr>
<td>6. $m \angle 6 = m \angle 7 = 90^\circ$</td>
<td>Congruent Linear Pairs</td>
</tr>
<tr>
<td>7. $m \angle 8 = 90^\circ$</td>
<td>Vertical Angles Theorem</td>
</tr>
<tr>
<td>8. $\angle 5$, $\angle 6$, $\angle 7$, and $\angle 8$ are right angles</td>
<td>Definition of right angle</td>
</tr>
<tr>
<td>9. $n \perp m$</td>
<td>Definition of perpendicular lines</td>
</tr>
</tbody>
</table>

Theorem 3-1: If $l \parallel m$ and $l \perp n$, then $n \perp m$.
3.4. Properties of Perpendicular Lines

Theorem 3-2: If \(l \perp n \) and \(n \perp m \), then \(l \parallel m \).

Every angle in the above two theorems will always be \(90^\circ \).

Example 4: Determine the measure of \(\angle 1 \).

Solution: From Theorem 3-1, we know that both parallel lines are perpendicular to the transversal.

\[
m\angle 1 = 90^\circ.
\]

Adjacent Complementary Angles If complementary angles are adjacent, their nonadjacent sides are perpendicular rays. What you have learned about perpendicular lines can be applied here.

Example 5: Find \(m\angle 1 \).

Solution: The two adjacent angles add up to \(90^\circ \), so \(l \perp m \).

\[
m\angle 1 = 90^\circ.
\]
Example 6: What is the measure of $\angle 1$?
Solution: $l \perp m$

So, $m\angle 1 + 70^\circ = 90^\circ$

$m\angle 1 = 20^\circ$

Example 7: Is $l \perp m$? Explain why or why not.
Solution: If the two adjacent angles add up to 90°, then l and m are perpendicular.

$$23^\circ + 67^\circ = 90^\circ$$

Therefore, $l \perp m$.
Know What? Revisited
Half Dome is vertical, so the slope is undefined.
http://www.nps.gov/yose/index.htm
Any horizon over an ocean is horizontal, which has a slope of zero, or no slope.
If Half Dome was placed on top of the ocean, the two would be perpendicular.

Review Questions

• Questions 1-25 are similar to Examples 1, 2, 4, 5, 6 and 7.
• Question 26 is similar to Example 3.
• Questions 27-30 are similar to Examples 5 and 6 and use Algebra.

Find the measure of $\angle 1$ for each problem below.
3.4. Properties of Perpendicular Lines

For questions 10-13, use the picture below.

10. Find \(m\angle ACD \).
11. Find \(m\angle CDB \).
12. Find \(m\angle EDB \).
13. Find \(m\angle CDE \).

In questions 14-17, determine if \(l \perp m \).
For questions 18-25, use the picture below.

18. Find $m\angle 1$.
19. Find $m\angle 2$.
20. Find $m\angle 3$.
21. Find $m\angle 4$.
22. Find $m\angle 5$.
23. Find $m\angle 6$.
24. Find $m\angle 7$.
25. Find $m\angle 8$.

Fill in the blanks in the proof below.

26. Given: $l \perp m$, $l \perp n$ Prove: $m \parallel n$
3.4. Properties of Perpendicular Lines

![Diagram of perpendicular lines]

Table 3.16:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. (\angle 1) and (\angle 2) are right angles</td>
<td>Definition of right angles</td>
</tr>
<tr>
<td>3.</td>
<td>Transitive PoE</td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5. (m \parallel n)</td>
<td></td>
</tr>
</tbody>
</table>

Algebra Connection Find the value of \(x \).

27. \(\angle I \) is a right angle.

28. \(\angle m \) is a right angle.

29. \(\angle 5x - 11 \)° and \(\angle 3x - 7 \)° are supplementary.

30. \(\angle 6x + 1 \)° and \(\angle 5x + 1 \)° are supplementary.
Review Queue Answers

1. Yes, the transversal will be perpendicular to m.

2. $m\angle B = 55^\circ$
3. $m\angle D = 27^\circ$
4. Each angle is 90°.
3.5 Parallel and Perpendicular Lines in the Coordinate Plane

Learning Objectives

- Compute slope.
- Determine the equation of parallel and perpendicular lines.

Review Queue

Find the slope between the following points.

1. (-3, 5) and (2, -5)
2. (7, -1) and (-2, 2)
3. Is $x = 3$ horizontal or vertical? How do you know?
4. Is $y = -1$ horizontal or vertical? How do you know?
5. Graph $y = \frac{1}{2}x - 2$ on an $x-y$ plane.

Know What? The picture to the right is the California Incline, a short road that connects Highway 1 with Santa Monica. The length of the road is 1532 feet and has an elevation of 177 feet. You may assume that the base of this incline is zero feet. Can you find the slope of the California Incline?

HINT: You will need to use the Pythagorean Theorem, which you may have seen in a previous math class.

Slope in the Coordinate Plane

Recall from Algebra I, two points (x_1, y_1) and (x_2, y_2) have a slope of $m = \frac{y_2 - y_1}{x_2 - x_1}$.

Different Types of Slope:

Positive
Negative

Zero

Undefined
Example 1: What is the slope of the line through (2, 2) and (4, 6)?

Solution: Use (2, 2) as \((x_1, y_1)\) and (4, 6) as \((x_2, y_2)\).

\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{4 - 2} = \frac{4}{2} = 2
\]

This slope is positive. Slope can also be written “rise over run.” In this case we “rise” 2, and “run” in the positive direction 1.

Example 2: Find the slope between (-8, 3) and (2, -2).

Solution: Use (-8, 3) as \((x_1, y_1)\) and (2, -2) as \((x_2, y_2)\).
\[
m = \frac{-2 - 3}{2 - (-8)} = \frac{-5}{10} = -\frac{1}{2}
\]

This slope is negative. Here, we don’t “rise,” but “fall” one, and “run” in the positive direction 2.

Example 3: Find the slope between (-5, -1) and (3, -1).

Solution: Use (-5, -1) as \((x_1, y_1)\) and (3, -1) as \((x_2, y_2)\).

\[
m = \frac{-1 - (-1)}{3 - (-5)} = \frac{0}{8} = 0
\]

The slope of this line is 0, or a horizontal line. Horizontal lines always pass through the y-axis. The y-coordinate for both points is -1.

So, the equation of this line is \(y = -1\).

Example 4: What is the slope of the line through (3, 2) and (3, 6)?

Solution: Use (3, 2) as \((x_1, y_1)\) and (3, 6) as \((x_2, y_2)\).

\[
m = \frac{6 - 2}{3 - 3} = \frac{4}{0} = \text{undefined}
\]

The slope of this line is undefined, which means that it is a vertical line. Vertical lines always pass through the x-axis. The x-coordinate for both points is 3.

So, the equation of this line is \(x = 3\).
Slopes of Parallel Lines

Earlier in the chapter we defined parallel lines as two lines that never intersect. In the coordinate plane, that would look like this:

If we take a closer look at these two lines, the slopes are both $\frac{2}{3}$.
This can be generalized to any pair of parallel lines.

Parallel lines have the same slope.

Example 5: Find the equation of the line that is parallel to $y = -\frac{1}{3}x + 4$ and passes through (9, -5).

Solution: Recall that the equation of a line is $y = mx + b$, where m is the slope and b is the y-intercept. We know that parallel lines have the same slope, so the line will have a slope of $-\frac{1}{3}$. Now, we need to find the y-intercept. Plug in 9 for x and -5 for y to solve for the new y-intercept (b).

\[-5 = -\frac{1}{3}(9) + b\]
\[-5 = -3 + b\]
\[-2 = b\]

The equation of line is $y = -\frac{1}{3}x - 2$.

Parallel lines always have the same slope and different y-intercepts.

Slopes of Perpendicular Lines

Perpendicular lines are two lines that intersect at a 90°, or right, angle. In the coordinate plane, that would look like this:
If we take a closer look at these two lines, the slope of one is -4 and the other is $\frac{1}{4}$.

This can be generalized to any pair of perpendicular lines in the coordinate plane.

The slopes of perpendicular lines are opposite signs and reciprocals of each other.

Example 6: Find the slope of the perpendicular lines to the lines below.

(a) $y = 2x + 3$

(b) $y = -\frac{2}{3}x - 5$

(c) $y = x + 2$

Solution: Look at the slope of each of these.

(a) $m = 2$, so m_\perp is the reciprocal and negative, $m_\perp = -\frac{1}{2}$.

(b) $m = -\frac{2}{3}$, take the reciprocal and make the slope positive, $m_\perp = \frac{3}{2}$.

(c) Because there is no number in front of x, the slope is 1. The reciprocal of 1 is 1, so the only thing to do is make it negative, $m_\perp = -1$.

Example 7: Find the equation of the line that is perpendicular to $y = -\frac{1}{3}x + 4$ and passes through (9, -5).

Solution: First, the slope is the reciprocal and opposite sign of $-\frac{1}{3}$. So, $m = 3$. Plug in 9 for x and -5 for y to solve for the new y—intercept (b).

\[
-5 = 3(9) + b \\
-5 = 27 + b \\
-32 = b
\]

Therefore, the equation of line is $y = 3x - 32$.

Graphing Parallel and Perpendicular Lines

Example 8: Find the equation of the lines below and determine if they are parallel, perpendicular or neither.
Solution: The top line has a y–intercept of 1. From there, use “rise over run” to find the slope. From the y–intercept, if you go up 1 and over 2, you hit the line again, $m = \frac{1}{2}$. The equation is $y = \frac{1}{2}x + 1$.

For the second line, the y–intercept is -3. The “rise” is 1 and the “run” is 2 making the slope $\frac{1}{2}$. The equation of this line is $y = \frac{1}{2}x - 3$.

The lines are parallel because they have the same slope.

Example 9: Graph $3x - 4y = 8$ and $4x + 3y = 15$. Determine if they are parallel, perpendicular, or neither.

Solution: First, we have to change each equation into slope-intercept form. In other words, we need to solve each equation for y.

\[
\begin{align*}
3x - 4y &= 8 \\
-4y &= -3x + 8 \\
y &= \frac{3}{4}x - 2
\end{align*}
\]

\[
\begin{align*}
4x + 3y &= 15 \\
3y &= -4x + 15 \\
y &= \frac{-4}{3}x + 5
\end{align*}
\]

Now that the lines are in slope-intercept form (also called y–intercept form), we can tell they are perpendicular because the slopes are opposite signs and reciprocals.

Example 10: Find the equation of the line that is

(a) parallel to the line through the point.

(b) perpendicular to the line through the points.

Solution: First the equation of the line is $y = 2x + 6$ and the point is $(2, -2)$. The parallel would have the same slope and pass through $(2, -2)$.
The equation is \(y = 2x + b \)

\[-2 = 2(2) + b\]
\[-2 = 4 + b\]
\[-6 = b\]

The equation is \(y = 2x - 6 \)

The perpendicular line also goes through (2, -2), but the slope is \(-\frac{1}{2}\).

\[y = -\frac{1}{2}x + b\]
\[-2 = -\frac{1}{2}(2) + b\]
\[-2 = -1 + b\]
\[-1 = b\]

The equation is \(y = -\frac{1}{2}x - 1 \)

Know What? Revisited In order to find the slope, we need to first find the horizontal distance in the triangle to the right. This triangle represents the incline and the elevation. To find the horizontal distance, we need to use the Pythagorean Theorem, \(a^2 + b^2 = c^2 \), where \(c \) is the hypotenuse.

\[
177^2 + \text{run}^2 = 1532^2 \\
31,329 + \text{run}^2 = 2,347,024 \\
\text{run}^2 = 2,315,695 \\
\text{run} \approx 1521.75
\]

The slope is then \(\frac{177}{1521.75} \), which is roughly \(\frac{3}{25} \).
Find the slope between the two given points.

1. (4, -1) and (-2, -3)
2. (-9, 5) and (-6, 2)
3. (7, 2) and (-7, -2)
4. (-6, 0) and (-1, -10)
5. (1, -2) and (3, 6)
6. (-4, 5) and (-4, -3)

Determine if each pair of lines are parallel, perpendicular, or neither. Then, graph each pair on the same set of axes.

7. \(y = -2x + 3 \) and \(y = \frac{1}{3}x + 3 \)
8. \(y = 4x - 2 \) and \(y = 4x + 5 \)
9. \(y = -x + 5 \) and \(y = x + 1 \)
10. \(y = -3x + 1 \) and \(y = 3x - 1 \)
11. \(2x - 3y = 6 \) and \(3x + 2y = 6 \)
12. \(5x + 2y = -4 \) and \(5x + 2y = 8 \)
13. \(x - 3y = -3 \) and \(x + 3y = 9 \)
14. \(x + y = 6 \) and \(4x + 4y = -16 \)

Determine the equation of the line that is parallel to the given line, through the given point.

15. \(y = -5x + 1 \); (-2, 3)
16. \(y = \frac{2}{3}x - 2 \); (9, 1)
17. \(x - 4y = 12 \); (-16, -2)
18. \(3x + 2y = 10 \); (8, -11)

Determine the equation of the line that is perpendicular to the given line, through the given point.

19. \(y = x - 1 \); (-6, 2)
20. \(y = 3x + 4 \); (9, -7)
21. \(5x - 2y = 6 \); (5, 5)
22. \(y = 4 \); (-1, 3)

Find the equation of the two lines in each graph below. Then, determine if the two lines are parallel, perpendicular or neither.
For the line and point below, find:

(a) A parallel line, through the given point.

(b) A perpendicular line, through the given point.
Review Queue Answers

1. \(m = \frac{-5 - 5}{2 + 1} = \frac{-10}{3} = -\frac{10}{3} = -5 \)
2. \(m = \frac{2 - 1}{2 - 1} = \frac{1}{0} = \text{undefined} \)
3. Vertical because it has to pass through \(x = 3 \) on the \(x \)-axis and doesn’t pass through \(y \)-axis at all.
4. Horizontal because it has to pass through \(y = -1 \) on the \(y \)-axis and it does not pass through the \(x \)-axis at all.

5. [Graph showing a line passing through points on the \(x \)-axis and \(y \)-axis.]
3.6 The Distance Formula

Learning Objectives

- Find the distance between two points.
- Find the shortest distance between vertical and horizontal lines and
- Find the shortest distance between parallel lines with slope of 1 or -1.

Review Queue

1. What is the slope of the line between (-1, 3) and (2, -9)?
2. Find the equation of the line that is perpendicular to \(y = -2x + 5 \) through the point (-4, -5).
3. Find the equation of the line that is parallel to \(y = \frac{2}{3}x - 7 \) through the point (3, 8).

Know What? The shortest distance between two points is a straight line. To the right are distances between cities in the Los Angeles area. What is the longest distance between Los Angeles and Orange? Which distance is the shortest?

The Distance Formula

The distance between two points \((x_1, y_1)\) and \((x_2, y_2)\) can be defined as \(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\). This formula will be derived in Chapter 9.

Example 1: Find the distance between (4, -2) and (-10, 3).

Solution: Plug in (4, -2) for \((x_1, y_1)\) and (-10, 3) for \((x_2, y_2)\) and simplify.
Example 2: Find the distance between (-2, -3) and (3, 9).

Solution: Use the distance formula, plug in the points, and simplify.

\[d = \sqrt{(-2 - 3)^2 + (-3 - 9)^2} \]
\[= \sqrt{(-5)^2 + (-12)^2} \]
\[= \sqrt{25 + 144} \]
\[= \sqrt{169} = 13 \text{ units} \]

Distances are always positive!

Shortest Distance between Vertical and Horizontal Lines

All **vertical lines are in the form** \(x = a \), **where \(a \) is the \(x \)-intercept.** To find the distance between two vertical lines, count the squares between the two lines.

Example 3: Find the distance between \(x = 3 \) and \(x = -5 \).

Solution: The two lines are 3 –(-5) units apart, or 8 units apart.

You can use this method for horizontal lines as well. **All horizontal lines are in the form** \(y = b \), **where \(b \) is the \(y \)-intercept.**

Example 4: Find the distance between \(y = 5 \) and \(y = -8 \).
3.6. The Distance Formula

Solution: The two lines are 5 –(-8) units apart, or 13 units.

Shortest Distance between Parallel Lines with \(m = 1 \) or -1

The shortest distance between two parallel lines is the perpendicular line between them. There are infinitely many perpendicular lines between two parallel lines.

Notice that all of the pink segments are the same length.

Example 5: Find the distance between \(y = x + 6 \) and \(y = x - 2 \).

Solution:

1. Find the perpendicular slope.

\(m = 1 \), so \(m_\perp = -1 \)
2. Find the y–intercept of the top line, \(y = x + 6 \). (0, 6)

3. Use the slope and count down 1 and to the right 1 until you hit \(y = x - 2 \).

Always rise/run the same amount for \(m = 1 \) or -1.

4. Use these two points in the distance formula to determine how far apart the lines are.

\[
d = \sqrt{(0 - 4)^2 + (6 - 2)^2}
\]
\[
= \sqrt{(-4)^2 + (4)^2}
\]
\[
= \sqrt{16 + 16}
\]
\[
= \sqrt{32} = 5.66 \text{ units}
\]

Example 6: Find the distance between \(y = -x - 1 \) and \(y = -x - 3 \).

Solution:

1. Find the perpendicular slope.

\(m = -1 \), so \(m_{\perp} = 1 \)

2. Find the y–intercept of the top line, \(y = -x - 1 \). (0, -1)

3. Use the slope and count down 1 and to the left 1 until you hit \(y = x - 3 \).
3.6. The Distance Formula

Know What? Revisited The shortest distance between Los Angeles and Orange is 26.3 miles along Highway 5. The longest distance is found by adding the distances along the 110 and 405, or 41.8 miles.

Review Questions

- Questions 1-10 are similar to Examples 1 and 2.
- Questions 11- are similar to Examples 3 and 4.
- Questions are similar to Examples 5 and 6.

Find the distance between each pair of points. Round your answer to the nearest hundredth.

1. (4, 15) and (-2, -1)
2. (-6, 1) and (9, -11)
3. (0, 12) and (-3, 8)
4. (-8, 19) and (3, 5)
5. (3, -25) and (-10, -7)
6. (-1, 2) and (8, -9)
7. (5, -2) and (1, 3)
8. (-30, 6) and (-23, 0)
9. (2, -2) and (2, 5)
10. (-9, -4) and (1, -1)

Use each graph below to determine how far apart each pair of parallel lines is.
Determine the shortest distance between the each pair of parallel lines. Round your answer to the nearest hundredth.

15. $x = 5, x = 1$
16. $y = -6, y = 4$
17. $y = 3, y = 15$
18. \(x = -10, x = -1 \)
19. \(x = 8, x = 0 \)
20. \(y = 7, y = -12 \)
21. What is the slope of the line \(y = x + 2 \)?
22. What is the slope of the line perpendicular to the line from #21?
23. What is the \(y \)-intercept of the line from #21?
24. What is the equation of the line that is perpendicular to \(y = x + 2 \) through its \(y \)-intercept?
25. Graph \(y = x + 2 \) and the line you found in #24. Then, graph \(y = x - 4 \). Where does the perpendicular line cross \(y = x - 4 \)?
26. Using the answers from #23 and #25 and the distance formula, find the distance between \(y = x + 2 \) and \(y = x - 4 \).

Find the distance between the parallel lines below.

27. \(y = x - 3, y = x + 11 \)
28. \(y = -x + 4, y = -x \)
29. \(y = -x - 5, y = -x + 1 \)
30. \(y = x + 12, y = x - 6 \)

Review Queue Answers

1. \(m = -4 \)
2. \(y = \frac{1}{2}x - 3 \)
3. \(y = \frac{1}{3}x + 6 \)
3.7 Chapter 3 Review

Symbol Toolbox

|| parallel
\ perpendicular

Keywords & Theorems

Lines and Angles

- Parallel
- Skew lines
- Parallel Postulate
- Perpendicular Line Postulate
- Transversal
- Corresponding Angles
- Alternate Interior Angles
- Alternate Exterior Angles
- Same Side Interior Angles

Properties of Parallel Lines

- Corresponding Angles Postulate
- Alternate Interior Angles Theorem
- Alternate Exterior Angles Theorem
- Same Side Interior Angles Theorem

Proving Lines Parallel

- Converse of Corresponding Angles Postulate
- Converse of Alternate Interior Angles Theorem
- Converse of the Alternate Exterior Angles Theorem
- Converse of the Same Side Interior Angles Theorem
- Parallel Lines Property

Properties of Perpendicular Lines

- Congruent Linear Pairs
- Theorem 3-1
- Theorem 3-2
- Adjacent Complementary Angles
3.7. Chapter 3 Review

Parallel and Perpendicular Lines in the Coordinate Plane

- Slope
- Slope-intercept form (y—intercept form)
- Standard Form

Distance Formula

- Distance Formula

Review

Find the value of each of the numbered angles below.

Texas Instruments Resources

In the CK-12 Texas Instruments Geometry FlexBook® resource, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9688.
Keywords: Define, write theorems, and/or draw a diagram for each word below.

1st Section: Lines and Angles
Parallel
Skew lines
Parallel Postulate
Perpendicular Line Postulate
Constructing a Perpendicular Line through a Point not on a Line
Constructing a Perpendicular Line through a Point on a Line
Transversal
Corresponding Angles
Alternate Interior Angles
Alternate Exterior Angles
Same Side Interior Angles

Homework:
2nd Section: Properties of Parallel Lines
Corresponding Angles Postulate
Alternate Interior Angles Theorem
Alternate Exterior Angles Theorem
Same Side Interior Angles Theorem
3.8. Study Guide

Homework:
3rd Section: Proving Lines Parallel
Converse of Corresponding Angles Postulate
Converse of Alternate Interior Angles Theorem
Converse of the Alternate Exterior Angles Theorem
Converse of the Same Side Interior Angles Theorem
Parallel Lines Property

Homework:
4th Section: Properties of Perpendicular Lines
Congruent Linear Pairs
Theorem 3-1
Theorem 3-2
Adjacent Complementary Angles

Homework:
5th Section: Parallel and Perpendicular Lines in the Coordinate Plane
Slope
y−intercept
Slope-intercept form (y−intercept form)
Standard Form
Finding the equation of a Line
Finding the equation of a Parallel Line to a Given Line
Finding the equation of a Perpendicular Line to a Given Line

Homework:
6th Section: The Distance Formula
Distance Formula
Distance between Vertical and Horizontal Lines
Distance between Lines with $m = 1$ or -1

Homework:
In this chapter, you will learn all about triangles. First, we will find out how many degrees are in a triangle and other properties of the angles within a triangle. Second, we will use that information to determine if two different triangles are congruent. Finally, we will investigate the properties of isosceles and equilateral triangles.
4.1 Triangle Sums

Learning Objectives

• Understand the Triangle Sum Theorem.
• Identify interior and exterior angles in a triangle.
• Use the Exterior Angle Theorem.

Review Queue

Classify the triangles below by their angles and sides.

4. Draw and label a straight angle, \(\angle ABC \). Which point is the vertex? How many degrees does a straight angle have?

Know What? Below is a map of the Bermuda Triangle. The myth of this triangle is that ships and planes have passed through and mysteriously disappeared.

The measurements of the sides of the triangle are in the picture. Classify the Bermuda triangle by its sides and angles. Then, using a protractor, find the measure of each angle. What do they add up to?
Recall that a triangle can be classified by its sides...

and its angles...

Interior Angles: The angles inside of a polygon.

Vertex: The point where the sides of a polygon meet.

Triangles have three interior angles, three vertices, and three sides.

A triangle is labeled by its vertices with a △. This triangle can be labeled △ABC, △ACB, △BCA, △BAC, △CBA or △CAB.
Triangle Sum Theorem The interior angles in a polygon are measured in degrees. How many degrees are there in a triangle?

Investigation 4-1: Triangle Tear-Up

Tools Needed: paper, ruler, pencil, colored pencils

1. Draw a triangle on a piece of paper. Make all three angles different sizes. Color the three interior angles three different colors and label each one, \(\angle 1 \), \(\angle 2 \), and \(\angle 3 \).

2. Tear off the three colored angles, so you have three separate angles.

3. Line up the angles so the vertices points all match up. What happens? What measure do the three angles add up to?

This investigation shows us that the sum of the angles in a triangle is 180° because the three angles fit together to form a straight angle where all the vertices meet.

Triangle Sum Theorem: The interior angles of a triangle add up to 180°.

\[
m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ
\]

Example 1: What \(m\angle T \)?

Solution: Set up an equation.
Even thought Investigation 4-1 is a way to show that the angles in a triangle add up to 180°, it is not a proof. Here is the proof of the Triangle Sum Theorem.

Given: \(\triangle ABC \) with \(\overrightarrow{AD} \parallel BC \)

Prove: \(m_1 + m_2 + m_3 = 180° \)

Table 4.1:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\triangle ABC) above with (\overrightarrow{AD} \parallel BC)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle 1 \cong \angle 4, \angle 2 \cong \angle 5)</td>
<td>Alternate Interior Angles Theorem</td>
</tr>
<tr>
<td>3. (m_1 = m_4, m_2 = m_5)</td>
<td>(\cong) angles have = measures</td>
</tr>
<tr>
<td>4. (m_4 + m_{\angle CAD} = 180°)</td>
<td>Linear Pair Postulate</td>
</tr>
<tr>
<td>5. (m_3 + m_5 = m_{\angle CAD})</td>
<td>Angle Addition Postulate</td>
</tr>
<tr>
<td>6. (m_4 + m_3 + m_5 = 180°)</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>7. (m_1 + m_3 + m_2 = 180°)</td>
<td>Substitution PoE</td>
</tr>
</tbody>
</table>

Example 2: What is the measure of each angle in an equiangular triangle?

Solution: \(\triangle ABC \) is an equiangular triangle, where all three angles are equal. Write an equation.

\[
m_\angle A + m_\angle B + m_\angle C = 180° \\
m_\angle A + m_\angle A + m_\angle A = 180° \\
3m_\angle A = 180° \\
m_\angle A = 180°/3 = 60°
\]

Substitute, all angles are equal.

Combine like terms.

If \(m_\angle A = 60° \), then \(m_\angle B = 60° \) and \(m_\angle C = 60° \).
Each angle in an equiangular triangle is 60°.

Example 3: Find the measure of the missing angle.

Solution: \(m\angle O = 41^\circ \) and \(m\angle G = 90^\circ \) because it is a right angle.

\[
\begin{align*}
\angle D + \angle O + \angle G &= 180^\circ \\
\angle D + 41^\circ + 90^\circ &= 180^\circ \\
\angle D + 41^\circ &= 90^\circ \\
\angle D &= 49^\circ
\end{align*}
\]

Notice that \(\angle D + \angle O = 90^\circ \).

The acute angles in a right triangle are always complementary.

Exterior Angles

Exterior Angle: The angle formed by one side of a polygon and the extension of the adjacent side.

In all polygons, there are two sets of exterior angles, one that goes around clockwise and the other goes around counterclockwise.

Notice that the interior angle and its adjacent exterior angle form a linear pair and add up to 180°.

Example 4: Find the measure of \(\angle RQS \).
Solution: 112° is an exterior angle of \(\triangle RQS \) and is supplementary to \(\angle RQS \).

\[112° + m \angle RQS = 180° \]
\[m \angle RQS = 68° \]

Example 5: Find the measure of the numbered interior and exterior angles in the triangle.

Solution:

\[m \angle 1 + 92° = 180° \text{ by the Linear Pair Postulate.} \]
\[m \angle 1 = 88° \]
\[m \angle 2 + 123° = 180° \text{ by the Linear Pair Postulate.} \]
\[m \angle 2 = 57° \]

\[m \angle 1 + m \angle 2 + m \angle 3 = 180° \text{ by the Triangle Sum Theorem.} \]
\[88° + 57° + m \angle 3 = 180 \]
\[m \angle 3 = 35° \]

Lastly, \(m \angle 3 + m \angle 4 = 180° \text{ by the Linear Pair Postulate.} \)
\[35° + m \angle 4 = 180° \]
\[m \angle 4 = 145° \]

In Example 5, the exterior angles are 92°, 123°, and 145°. Adding these angles together, we get \(92° + 123° + 145° = 360° \). This is true for any set of exterior angles for any polygon.

Exterior Angle Sum Theorem: The exterior angles of a polygon add up to 360°.
Example 6: What is the value of \(p \) in the triangle below?

![Triangle with angles 130°, 110°, and \(p \)]

Solution: First, we need to find the missing exterior angle, let’s call it \(x \). Set up an equation using the Exterior Angle Sum Theorem.

\[
130° + 110° + x = 360°
\]

\[
x = 360° - 130° - 110°
\]

\[
x = 120°
\]

\(x \) and \(p \) add up to 180° because they are a linear pair.

\[
x + p = 180°
\]

\[
120° + p = 180°
\]

\[
p = 60°
\]

Example 7: Find \(m\angle A \).

![Triangle with angles 115°, 79°, and \(m\angle A \)]

Solution:

\[
m\angle ACB + 115° = 180° \quad \text{because they are a linear pair}
\]

\[
m\angle ACB = 65°
\]

\[
m\angle A + 65° + 79° = 180° \quad \text{by the Triangle Sum Theorem}
\]

\[
m\angle A = 36°
\]
Remote Interior Angles: The two angles in a triangle that are not adjacent to the indicated exterior angle. In Example 7 above, $\angle A$ and 79° are the remote interior angles relative to 115°.

Exterior Angle Theorem From Example 7, we can find the sum of $m\angle A$ and $m\angle B$, which is $36^\circ + 79^\circ = 115^\circ$. This is equal to the exterior angle at C.

Exterior Angle Theorem: The sum of the remote interior angles is equal to the non-adjacent exterior angle.

\[m\angle A + m\angle B = m\angle ACD \]

Proof of the Exterior Angle Theorem

Given: Triangle with exterior $\angle 4$
Prove: $m\angle 1 + m\angle 2 = m\angle 4$

\[\begin{array}{c|c}
\text{Statement} & \text{Reason} \\
1. \text{Triangle with exterior } \angle 4 & \text{Given} \\
2. m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ & \text{Triangle Sum Theorem} \\
3. m\angle 3 + m\angle 4 = 180^\circ & \text{Linear Pair Postulate} \\
4. m\angle 1 + m\angle 2 + m\angle 3 = m\angle 3 + m\angle 4 & \text{Transitive PoE} \\
5. m\angle 1 + m\angle 2 = m\angle 4 & \text{Subtraction PoE} \\
\end{array} \]

Example 8: Find $m\angle C$.

Solution: Using the Exterior Angle Theorem
4.1. Triangle Sums

\[
m\angle C + 16^\circ = 121^\circ \\
m\angle TCA = 105^\circ
\]

If you forget the Exterior Angle Theorem, you can do this problem just like Example 7.

Example 9: Algebra Connection Find the value of \(x\) and the measure of each angle.

![Image of a triangle with angles labeled](image)

Solution: All the angles add up to 180°.

\[
(8x - 1)^\circ + (3x + 9)^\circ + (3x + 4)^\circ = 180^\circ \\
(14x + 12)^\circ = 180^\circ \\
14x = 168^\circ \\
x = 12^\circ
\]

Substitute in 12° for \(x\) to find each angle.

\[
3(12^\circ) + 9^\circ = 45^\circ \\
3(12^\circ) + 4^\circ = 40^\circ \\
8(12^\circ) - 1^\circ = 95^\circ
\]

Example 10: Algebra Connection Find the value of \(x\) and the measure of each angle.

![Image of a triangle with angles labeled](image)

Solution: Set up an equation using the Exterior Angle Theorem.

\[
(4x + 2)^\circ + (2x - 9)^\circ = (5x + 13)^\circ \\
\uparrow \\
\text{interior angles} \\
\uparrow \\
\text{exterior angle} \\
(6x - 7)^\circ = (5x + 13)^\circ \\
x = 20^\circ
\]

Substitute in 20° for \(x\) to find each angle.
4(20°) + 2° = 82°
2(20°) − 9° = 31°
Exterior angle: 5(20°) + 13° = 113°

Know What? Revisited The Bermuda Triangle is an acute scalene triangle. The angle measures are in the picture below. Your measured angles should be within a degree or two of these measures. The angles should add up to 180°. However, because your measures are estimates using a protractor, they might not exactly add up.

The angle measures in the picture are the measures from a map (which is flat). Because the earth is curved, in real life the measures will be slightly different.

Review Questions

- Questions 1-16 are similar to Examples 1-8.
- Questions 17 and 18 use the definition of an Exterior Angle and the Exterior Angle Sum Theorem.
- Question 19 is similar to Example 3.
- Questions 20-27 are similar to Examples 9 and 10.

Determine \(m\angle 1 \).
4.1. Triangle Sums

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.
16. Find the lettered angles, \(a - f \), in the picture to the right. Note that the two lines are parallel.

17. Draw both sets of exterior angles on the same triangle.

a. What is \(m\angle 1 + m\angle 2 + m\angle 3 \)?
b. What is \(m\angle 4 + m\angle 5 + m\angle 6 \)?
c. What is \(m\angle 7 + m\angle 8 + m\angle 9 \)?
d. List all pairs of congruent angles.

18. Fill in the blanks in the proof below. **Given:** The triangle to the right with interior angles and exterior angles.

 Prove: \(m\angle 4 + m\angle 5 + m\angle 6 = 360^\circ \)

Table 4.3:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Triangle with interior and exterior angles.</td>
<td>Given</td>
</tr>
<tr>
<td>2. (m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ)</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.3: (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. $\angle 3$ and $\angle 4$ are a linear pair, $\angle 2$ and $\angle 5$ are a linear pair, and $\angle 1$ and $\angle 6$ are a linear pair</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Linear Pair Postulate (do all 3)</td>
</tr>
<tr>
<td>5. $m\angle 1 + m\angle 6 = 180^\circ$</td>
<td></td>
</tr>
<tr>
<td>$m\angle 2 + m\angle 5 = 180^\circ$</td>
<td></td>
</tr>
<tr>
<td>$m\angle 3 + m\angle 4 = 180^\circ$</td>
<td></td>
</tr>
<tr>
<td>6. $m\angle 1 + m\angle 6 + m\angle 2 + m\angle 5 + m\angle 3 + m\angle 4 = 540^\circ$</td>
<td></td>
</tr>
<tr>
<td>7. $m\angle 4 + m\angle 5 + m\angle 6 = 360^\circ$</td>
<td></td>
</tr>
</tbody>
</table>

19. Fill in the blanks in the proof below. Given: $\triangle ABC$ with right angle B. Prove: $\angle A$ and $\angle C$ are complementary.

Table 4.4:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\triangle ABC$ with right angle B.</td>
<td>Given</td>
</tr>
<tr>
<td>2.</td>
<td>Definition of a right angle</td>
</tr>
<tr>
<td>3. $m\angle A + m\angle B + m\angle C = 180^\circ$</td>
<td></td>
</tr>
<tr>
<td>4. $m\angle A + 90^\circ + m\angle C = 180^\circ$</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6. $\angle A$ and $\angle C$ are complementary</td>
<td></td>
</tr>
</tbody>
</table>

Algebra Connection Solve for x.

20.

21.

22.
Review Queue Answers

1. acute isosceles
2. obtuse scalene
3. right scalene
4. B is the vertex, 180°,
4.2. Congruent Figures

Learning Objectives

- Define congruent triangles and use congruence statements.
- Understand the Third Angle Theorem.

Review Queue

What part of each pair of triangles are congruent? Write out each congruence statement for the marked congruent sides and angles.

3. Determine the measure of x.

b. What is the measure of each angle?
c. What type of triangle is this?

Know What? Quilt patterns are very geometrical. The pattern to the right is made up of several congruent figures. In order for these patterns to come together, the quilter rotates and flips each block (in this case, a large triangle, smaller triangle, and a smaller square) to get new patterns and arrangements.

How many different sets of colored congruent triangles are there? How many triangles are in each set? How do you know these triangles are congruent?
Congruent Triangles

Two figures are congruent if they have exactly the same size and shape.

Congruent Triangles: Two triangles are congruent if the three corresponding angles and sides are congruent.

\[\triangle ABC\] and \[\triangle DEF\] are congruent because

\[\overline{AB} \cong \overline{DE}\] \[\overline{BC} \cong \overline{EF}\] \[\angle A \cong \angle D\] \[\angle B \cong \angle E\] \[\angle C \cong \angle F\]

When referring to corresponding congruent parts of congruent triangles it is called **Corresponding Parts of Congruent Triangles are Congruent**, or **CPCTC**.

Example 1: Are the two triangles below congruent?
4.2. Congruent Figures

Solution: To determine if the triangles are congruent, match up sides with the same number of tic marks: $\overline{BC} \cong \overline{MN}$, $\overline{AB} \cong \overline{LM}$, $\overline{AC} \cong \overline{LN}$.

Next match up the angles with the same markings:
$\angle A \cong \angle L$, $\angle B \cong \angle M$, and $\angle C \cong \angle N$.

Lastly, we need to make sure these are corresponding parts. To do this, check to see if the congruent angles are opposite congruent sides. Here, $\angle A$ is opposite \overline{BC} and $\angle L$ is opposite \overline{MN}. Because $\angle A \cong \angle L$ and $\overline{BC} \cong \overline{MN}$, they are corresponding. Doing this check for the other sides and angles, we see that everything matches up and the two triangles are congruent.

Creating Congruence Statements

In Example 1, we determined that $\triangle ABC$ and $\triangle LMN$ are congruent. When stating that two triangles are congruent, the corresponding parts must be written in the same order. Using Example 1, we would have:

$\triangle ABC \cong \triangle LMN$

Notice that the congruent sides also line up within the congruence statement.

$\overline{AB} \cong \overline{LM}$, $\overline{BC} \cong \overline{MN}$, $\overline{AC} \cong \overline{LN}$

We can also write this congruence statement five other ways, as long as the congruent angles match up. For example, we can also write $\triangle ABC \cong \triangle LMN$ as:

$\triangle ACB \cong \triangle LNM$ $\triangle BCA \cong \triangle MNL$ $\triangle BAC \cong \triangle MLN$

$\triangle CBA \cong \triangle NML$ $\triangle CAB \cong \triangle NLM$

Example 2: Write a congruence statement for the two triangles below.

Solution: Line up the corresponding angles in the triangles:
$\angle R \cong \angle F$, $\angle S \cong \angle E$, and $\angle T \cong \angle D$.

$\triangle RST \cong \triangle FED$

Example 3: If $\triangle CAT \cong \triangle DOG$, what else do you know?

Solution: From this congruence statement, we know three pairs of angles and three pairs of sides are congruent.
Third Angle Theorem

Example 4: Find \(m \angle C \) and \(m \angle J \).

Solution: The sum of the angles in a triangle is 180°.

\[
\triangle ABC : 35^\circ + 88^\circ + m \angle C = 180^\circ \\
m \angle C = 57^\circ \\
\triangle HIJ : 35^\circ + 88^\circ + m \angle J = 180^\circ \\
m \angle J = 57^\circ \\
\]

Notice we were given \(m \angle A = m \angle H \) and \(m \angle B = m \angle I \) and we found out \(m \angle C = m \angle J \). This can be generalized into the Third Angle Theorem.

Third Angle Theorem: If two angles in one triangle are congruent to two angles in another triangle, then the third pair of angles must also congruent.

If \(\angle A \cong \angle D \) and \(\angle B \cong \angle E \), then \(\angle C \cong \angle F \).

Example 5: Determine the measure of the missing angles.
Solution: From the Third Angle Theorem, we know $\angle C \cong \angle F$.

\[
m\angle A + m\angle B + m\angle C = 180^\circ \\
m\angle D + m\angle B + m\angle C = 180^\circ \\
42^\circ + 83^\circ + m\angle C = 180^\circ \\
m\angle C = 55^\circ = m\angle F
\]

Congruence Properties Recall the Properties of Congruence from Chapter 2. They will be very useful in the upcoming sections.

- Reflexive Property of Congruence: $\overline{AB} \cong \overline{AB}$ or $\triangle ABC \cong \triangle ABC$
- Symmetric Property of Congruence: $\angle EFG \cong \angle XYZ$ and $\angle XYZ \cong \angle EFG$ $\triangle ABC \cong \triangle DEF$ and $\triangle DEF \cong \triangle ABC$
- Transitive Property of Congruence: $\triangle ABC \cong \triangle DEF$ and $\triangle DEF \cong \triangle GHI$ then $\triangle ABC \cong \triangle GHI$

These three properties will be very important when you begin to prove that two triangles are congruent.

Example 6: In order to say that $\triangle ABD \cong \triangle ABC$, you must show the three corresponding angles and sides are congruent. Which pair of sides is congruent by the Reflexive Property?

Solution: The side \overline{AB} is shared by both triangles. In a geometric proof, $\overline{AB} \cong \overline{AB}$ by the Reflexive Property.

Know What? Revisited The 16 “A” triangles are congruent. The 16 “B” triangles are also congruent. The quilt pattern is made from dividing up the entire square into smaller squares. Both the “A” and “B” triangles are right triangles.
Review Questions

• Questions 1 and 2 are similar to Example 3.
• Questions 3-12 are a review and use the definitions and theorems explained in this section.
• Questions 13-17 are similar to Example 1 and 2.
• Question 18 the definitions and theorems explained in this section.
• Questions 19-22 are similar to Examples 4 and 5.
• Question 23 is a proof of the Third Angle Theorem.
• Questions 24-28 are similar to Example 6.
• Questions 29 and 30 are investigations using congruent triangles, a ruler and a protractor.

1. If \(\triangle RAT \cong \triangle UGH \), what is also congruent?
2. If \(\triangle BIG \cong \triangle TOP \), what is also congruent?

For questions 3-7, use the picture to the right.

3. What theorem tells us that \(\triangle FGH \cong \triangle FGI \)?
4. What is \(m\angle FGI \) and \(m\angle FGH \)? How do you know?
5. What property tells us that the third side of each triangle is congruent?
6. How does \(FG \) relate to \(IFH \)?
7. Write the congruence statement for these two triangles.

For questions 8-12, use the picture to the right.

8. \(\overline{AB} \parallel \overline{DE} \), what angles are congruent? How do you know?
9. Why is \(\angle ACB \cong \angle ECD \)? It is not the same reason as #8.
10. Are the two triangles congruent with the information you currently have? Why or why not?
11. If you are told that \(C \) is the midpoint of \(\overline{AE} \) and \(\overline{BD} \), what segments are congruent?
12. Write a congruence statement.

For questions 13-16, determine if the triangles are congruent. If they are, write the congruence statement.
17. Suppose the two triangles to the right are congruent. Write a congruence statement for these triangles.

18. Explain how we know that if the two triangles are congruent, then $\angle B \cong \angle Z$.

For questions 19-22, determine the measure of all the angles in the each triangle.

19.

20.
23. Fill in the blanks in the Third Angle Theorem proof below. Given: $\angle A \cong \angle D$, $\angle B \cong \angle E$ Prove: $\angle C \cong \angle F$

\[\text{TABLE 4.5:} \]

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\angle A \cong \angle D$, $\angle B \cong \angle E$</td>
<td>\cong angles have = measures</td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3. $m\angle A + m\angle B + m\angle C = 180^\circ$</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>$m\angle D + m\angle E + m\angle F = 180^\circ$</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6. $m\angle C = m\angle F$</td>
<td></td>
</tr>
<tr>
<td>7. $\angle C \cong \angle F$</td>
<td></td>
</tr>
</tbody>
</table>

For each of the following questions, determine if the Reflexive, Symmetric or Transitive Properties of Congruence is used.

24. $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$
25. $\overline{AB} \cong \overline{AB}$
26. $\triangle XYZ \cong \triangle LMN$ and $\triangle LMN \cong \triangle XYZ$
27. $\triangle ABC \cong \triangle BAC$
28. What type of triangle is $\triangle ABC$ in #27? How do you know?

Review Queue Answers

1. $\angle B \cong \angle H$, $\overline{AB} \cong \overline{GH}$, $\overline{BC} \cong \overline{HI}$
2. $\angle C \cong \angle M$, $\overline{BC} \cong \overline{LM}$
3. The angles add up to 180°
 a. $(5x + 2)^\circ + (4x + 3)^\circ + (3x - 5)^\circ = 180^\circ$
4.2. Congruent Figures

\[12x = 180^\circ \]
\[x = 15^\circ \]

b. \(77^\circ, 63^\circ, 40^\circ\)
c. acute scalene
4.3 Triangle Congruence using SSS and SAS

Learning Objectives

- Use the distance formula to analyze triangles on the $x-y$ plane.
- Apply the SSS and SAS Postulate to show two triangles are congruent.

Review Queue

1. Use the distance formula, $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ to find the distance between the two points.
 a. (-1, 5) and (4, 12)
 b. (-6, -15) and (-3, 8)

2. a. If we know that $\overline{AB} \parallel \overline{CD}$, $\overline{AD} \parallel \overline{BC}$, what angles are congruent? By which theorem?
 b. Which side is congruent by the Reflexive Property?
 c. Is this enough to say $\triangle ADC \cong \triangle CBA$?

3. a. If we know that B is the midpoint of \overline{AC} and \overline{DE}, what segments are congruent?
 b. Are there any angles that are congruent by looking at the picture? Which ones and why?
 c. Is this enough to say $\triangle ABE \cong \triangle CBD$?

Know What?

The “ideal” measurements in a kitchen from the sink, refrigerator and oven are as close to an equilateral triangle as possible. Your parents are remodeling theirs to be as close to this as possible and the measurements are in the picture at the left, below. Your neighbor’s kitchen has the measurements on the right. Are the two triangles congruent? Why or why not?
SSS Postulate of Triangle Congruence

Consider the question: If I have three lengths: 3 in, 4 in, and 5 in, can I construct more than one triangle?

Investigation 4-2: Constructing a Triangle Given Three Sides

Tools Needed: compass, pencil, ruler, and paper

1. Draw the longest side (5 in) horizontally, halfway down the page.

The drawings in this investigation are to scale.

2. Take the compass and, using the ruler, widen the compass to measure 4 in, the second side.

3. Using the measurement from Step 2, place the pointer of the compass on the left endpoint of the side drawn in Step 1. Draw an arc mark above the line segment.

4. Repeat Step 2 with the third measurement, 3 in. Then, like Step 3, place the pointer of the compass on the right endpoint of the side drawn in Step 1. Draw an arc mark above the line segment. Make sure it intersects the arc mark drawn in Step 3.
5. Draw lines from each endpoint to the arc intersections. These segments are the other two sides of the triangle.

An animation of this construction can be found at: http://www.mathsisfun.com/geometry/construct-ruler-compass-1.html

Can another triangle be drawn with these measurements that look different? NO. **Only one triangle can be created from any given three lengths. You can rotate, flip, or move this triangle but it will still be the same size.**

Side-Side-Side (SSS) Triangle Congruence Postulate: If 3 sides in one triangle are congruent to 3 sides in another triangle, then the triangles are congruent.

\[BC \cong YZ, \ AB \cong XY, \text{ and } AC \cong XZ \text{ then } \triangle ABC \cong \triangle XYZ. \]

The SSS Postulate is a shortcut. Before, you had to show **3 sides and 3 angles** in one triangle were congruent to **3 sides and 3 angles** in another triangle. Now you only have to show **3 sides** in one triangle are congruent to **3 sides** in another.

Example 1: Write a triangle congruence statement based on the picture below:

Solution: From the tic marks, we know \(AB \cong LM, \ AC \cong LR, \ BC \cong MK \). From the SSS Postulate, the triangles are congruent. Lining up the corresponding sides, we have \(\triangle ABC \cong \triangle LMK \).

Don’t forget ORDER MATTERS when writing congruence statements. Line up the sides with the same number of tic marks.
Example 2: Write a two-column proof to show that the two triangles are congruent.

Given: \(\overline{AB} \cong \overline{DE} \)

\(C \) is the midpoint of \(\overline{AE} \) and \(\overline{DB} \).

Prove: \(\triangle ACB \cong \triangle ECD \)

Solution:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\overline{AB} \cong \overline{DE})</td>
<td>Given</td>
</tr>
<tr>
<td>(C) is the midpoint of (\overline{AE}) and (\overline{DB})</td>
<td>Definition of a midpoint</td>
</tr>
<tr>
<td>2. (\overline{AC} \cong \overline{CE}), (\overline{BC} \cong \overline{CD})</td>
<td>SSS Postulate</td>
</tr>
<tr>
<td>3. (\triangle ACB \cong \triangle ECD)</td>
<td></td>
</tr>
</tbody>
</table>

Prove Move: You must clearly state the three sets of sides are congruent BEFORE stating the triangles are congruent.

Prove Move: Mark the picture with the information you are given as well as information that you see in the picture (vertical angles, information from parallel lines, midpoints, angle bisectors, right angles). This information may be used in a proof.

SAS Triangle Congruence Postulate

SAS refers to Side-Angle-Side. The placement of the word Angle is important because it indicates that the angle you are given is *between* the two sides.

Included Angle: When an angle is between two given sides of a polygon.

\(\angle B \) would be the included angle for sides \(\overline{AB} \) and \(\overline{BC} \).

Consider the question: If I have two sides of length 2 in and 5 in and the angle between them is 45°, can I construct one triangle?

Investigation 4-3: Constructing a Triangle Given Two Sides and Included Angle

Tools Needed: protractor, pencil, ruler, and paper

1. Draw the longest side (5 in) horizontally, halfway down the page.
The drawings in this investigation are to scale.

2. At the left endpoint of your line segment, use the protractor to measure a 45° angle. Mark this measurement.

3. Connect your mark from Step 2 with the left endpoint. Make your line 2 in long, the length of the second side.

4. Connect the two endpoints to draw the third side.

Can you draw another triangle, with these measurements that looks different? NO. Only one triangle can be created from any two lengths and the INCLUDED angle.

Side-Angle-Side (SAS) Triangle Congruence Postulate: If two sides and the included angle in one triangle are congruent to two sides and the included angle in another triangle, then the two triangles are congruent.

\[\triangle ABC \cong \triangle XYZ \]

Example 3: What additional piece of information do you need to show that these two triangles are congruent using the SAS Postulate?
a) $\angle ABC \cong \angle LKM$

b) $\overline{AB} \cong \overline{LK}$

c) $\overline{BC} \cong \overline{KM}$

d) $\angle BAC \cong \angle KLM$

Solution: For the SAS Postulate, you need the side on the other side of the angle. In $\triangle ABC$, that is \overline{BC} and in $\triangle LKM$ that is \overline{KM}. The answer is c.

Example 4: Write a two-column proof to show that the two triangles are congruent.

Given: C is the midpoint of \overline{AE} and \overline{DB}

Prove: $\triangle ACB \cong \triangle ECD$

Solution:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. C is the midpoint of \overline{AE} and \overline{DB}</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\overline{AC} \cong \overline{CE}$, $\overline{BC} \cong \overline{CD}$</td>
<td>Definition of a midpoint</td>
</tr>
<tr>
<td>3. $\angle ACB \cong \angle DCE$</td>
<td>Vertical Angles Postulate</td>
</tr>
<tr>
<td>4. $\triangle ACB \cong \triangle ECD$</td>
<td>SAS Postulate</td>
</tr>
</tbody>
</table>

SSS in the Coordinate Plane

The only way we will show two triangles are congruent in an $x - y$ plane is using SSS. To do this, you need to use the distance formula.

Example 5: Find the distances of all the line segments from both triangles to see if the two triangles are congruent.
Solution: Begin with \(\triangle ABC \) and its sides.

\[
AB = \sqrt{(-6 - (-2))^2 + (5 - 10)^2} \\
= \sqrt{(-4)^2 + (-5)^2} \\
= \sqrt{16 + 25} \\
= \sqrt{41}
\]

\[
BC = \sqrt{(-2 - (-3))^2 + (10 - 3)^2} \\
= \sqrt{(1)^2 + (7)^2} \\
= \sqrt{1 + 49} \\
= \sqrt{50} = 5\sqrt{2}
\]

\[
AC = \sqrt{(-6 - (-3))^2 + (5 - 3)^2} \\
= \sqrt{(-3)^2 + (2)^2} \\
= \sqrt{9 + 4} \\
= \sqrt{13}
\]

Now, find the distances of all the sides in \(\triangle DEF \).

\[
DE = \sqrt{(1 - 5)^2 + (-3 - 2)^2} \\
= \sqrt{(-4)^2 + (-5)^2} \\
= \sqrt{16 + 25} \\
= \sqrt{41}
\]

\[
EF = \sqrt{(5 - 4)^2 + (2 - (-5))^2} \\
= \sqrt{(1)^2 + (7)^2} \\
= \sqrt{1 + 49} \\
= \sqrt{50} = 5\sqrt{2}
\]

\[
DF = \sqrt{(1 - 4)^2 + (-3 - (-5))^2} \\
= \sqrt{(-3)^2 + (2)^2} \\
= \sqrt{9 + 4} \\
= \sqrt{13}
\]
$AB = DE$, $BC = EF$, and $AC = DF$, so two triangles are congruent by SSS.

Example 6: Determine if the two triangles are congruent.

![Triangle Diagram]

Solution: Start with $\triangle ABC$.

\[
AB = \sqrt{(-2 - (-8))^2 + (-2 - (-6))^2}
\]
\[
= \sqrt{(6)^2 + (4)^2}
\]
\[
= \sqrt{36 + 16}
\]
\[
= \sqrt{52} = 2\sqrt{13}
\]

\[
BC = \sqrt{(-8 - (-6))^2 + (-6 - (-9))^2}
\]
\[
= \sqrt{(-2)^2 + (3)^2}
\]
\[
= \sqrt{4 + 9}
\]
\[
= \sqrt{13}
\]

\[
AC = \sqrt{(-2 - (-6))^2 + (-2 - (-9))^2}
\]
\[
= \sqrt{(4)^2 + (7)^2}
\]
\[
= \sqrt{16 + 49}
\]
\[
= \sqrt{65}
\]

Now find the sides of $\triangle DEF$.

\[
DE = \sqrt{(3 - 6)^2 + (9 - 4)^2}
\]
\[
= \sqrt{(-3)^2 + (5)^2}
\]
\[
= \sqrt{9 + 25}
\]
\[
= \sqrt{34}
\]
\[
EF = \sqrt{(6 - 10)^2 + (4 - 7)^2} \\
= \sqrt{(-4)^2 + (-3)^2} \\
= \sqrt{16 + 9} \\
= \sqrt{25} = 5
\]

\[
DF = \sqrt{(3 - 10)^2 + (9 - 7)^2} \\
= \sqrt{(-7)^2 + (2)^2} \\
= \sqrt{49 + 4} \\
= \sqrt{53}
\]

No sides have equal measures, so the triangles are not congruent.

Know What? Revisited From what we have learned in this section, the two triangles are not congruent because the distance from the fridge to the stove in your house is 4 feet and in your neighbor’s it is 4.5 ft. The SSS Postulate tells us that all three sides have to be congruent in order for the triangles to be congruent.

Review Questions

- Questions 1-10 are similar to Example 1.
- Questions 11-16 are similar to Example 3.
- Questions 17-23 are similar to Examples 2 and 4.
- Questions 24-27 are similar to Examples 5 and 6.

Are the pairs of triangles congruent? If so, write the congruence statement and why.
State the additional piece of information needed to show that each pair of triangles is congruent.

11. Use SAS

12. Use SSS
13. Use SAS

14. Use SAS

15. Use SSS

16. Use SAS

Fill in the blanks in the proofs below.

17. Given: \(\overline{AB} \cong \overline{DC}, \overline{BE} \cong \overline{CE} \) Prove: \(\triangle ABE \cong \triangle ACE \)
4.3. Triangle Congruence using SSS and SAS

Table 4.8:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td>2. (\angle AEB \cong \angle DEC)</td>
<td>2.</td>
</tr>
<tr>
<td>3. (\triangle ABE \cong \triangle ACE)</td>
<td>3.</td>
</tr>
</tbody>
</table>

18. **Given:** \(AB \cong DC, AC \cong DB \) **Prove:** \(\triangle ABC \cong \triangle DCB \)

![Diagram 1](image1)

Table 4.9:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
<td>2. Reflexive PoC</td>
</tr>
<tr>
<td>3. (\triangle ABC \cong \triangle DCB)</td>
<td>3.</td>
</tr>
</tbody>
</table>

19. **Given:** \(B \) is a midpoint of \(DC \), \(AB \perp DC \) **Prove:** \(\triangle ABD \cong \triangle ABC \)

![Diagram 2](image2)

Table 4.10:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (B) is a midpoint of (DC), (AB \perp DC)</td>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
<td>2. Definition of a midpoint</td>
</tr>
<tr>
<td>3. (\angle ABD) and (\angle ABC) are right angles</td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>4. All right angles are (\cong)</td>
</tr>
<tr>
<td>5.</td>
<td>5.</td>
</tr>
<tr>
<td>6. (\triangle ABD \cong \triangle ABC)</td>
<td>6.</td>
</tr>
</tbody>
</table>

20. **Given:** \(AB \) is an angle bisector of \(\angle DAC \) **Prove:** \(\triangle ABD \cong \triangle ABC \)

![Diagram 3](image3)
Table 4.11:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. $\triangle DAB \cong \triangle BAC$</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>4. $\triangle ABD \cong \triangle ABC$</td>
<td></td>
</tr>
</tbody>
</table>

21. Given: B is the midpoint of \overline{DC} and $\overline{AC} \cong \overline{AB}$
Prove: $\triangle ABD \cong \triangle ABC$

![Triangle Diagram](triangle1.png)

Table 4.12:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. $\triangle ABD \cong \triangle ABC$</td>
<td>Definition of a Midpoint</td>
</tr>
<tr>
<td>3.</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>4. $\triangle ABD \cong \triangle ABC$</td>
<td></td>
</tr>
</tbody>
</table>

22. Given: B is the midpoint of \overline{DE} and $\overline{AC} \perp \overline{AB}$ is a right angle
Prove: $\triangle ABE \cong \triangle CBD$

![Triangle Diagram](triangle2.png)

Table 4.13:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\overline{DB} \cong \overline{BE}$, $\overline{AB} \cong \overline{BC}$</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Definition of a Right Angle</td>
</tr>
<tr>
<td>4.</td>
<td>Vertical Angle Theorem</td>
</tr>
<tr>
<td>5. $\triangle ABE \cong \triangle CBD$</td>
<td></td>
</tr>
</tbody>
</table>

23. Given: \overline{DB} is the angle bisector of $\angle ADC$ and \overline{DC}
Prove: $\triangle ABD \cong \triangle CBD$
Table 4.14:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. $\triangle ADB \cong \triangle BDC$</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4. $\triangle ABD \cong \triangle CBD$</td>
<td></td>
</tr>
</tbody>
</table>

Find the lengths of the sides of each triangle to see if the two triangles are congruent. Leave your answers under the radical.

24. $\triangle ABC$: $A(-1,5), B(-4,2), C(2,-2)$
25. $\triangle ABC$: $A(-8,-3), B(-2,-4), C(-5,-9)$
26. $\triangle ABC$: $A(-1,5), B(-4,2), C(2,-2)$ and $\triangle DEF$: $D(7,-5), E(4,2), F(8,-9)$
27. $\triangle ABC$: $A(-8,-3), B(-2,-4), C(-5,-9)$ and $\triangle DEF$: $D(-7,2), E(-1,3), F(-4,8)$
Review Queue Answers

1.
 a. \(\sqrt{74}\)
 b. \(\sqrt{538}\)

2.
 a. \(\angle BAC \cong \angle DCA, \angle DAC \cong \angle BCA\) by the Alternate Interior Angles Theorem.
 b. \(AC \cong AC\)
 c. Not yet, this would be ASA.

3.
 a. \(DB \cong BE, AB \cong BC\)
 b. \(\angle DBC \cong \angle ABE\) by the Vertical Angles Theorem.
 c. By the end of this section, yes, we will be able to show that these two triangles are congruent by SAS.
4.4 Triangle Congruence using ASA, AAS, and HL

Learning Objectives

- Use and understand the ASA, AAS, and HL Congruence Postulate.
- Complete two-column proofs using SSS, SAS, ASA and AAS.

Review Queue

1. a. What sides are marked congruent?
 b. Is third side congruent? Why?
 c. Write the congruence statement for the two triangles. Why are they congruent?

2. a. From the parallel lines, what angles are congruent?
 b. How do you know the third angle is congruent?
 c. Are any sides congruent? How do you know?
 d. Are the two triangles congruent? Why or why not?

3. If \(\triangle DEF \cong \triangle PQR \), can it be assumed that:
 a. \(\angle F \cong \angle R \)? Why or why not?
 b. \(EF \cong PR \)? Why or why not?

Know What? Your parents changed their minds at the last second about their kitchen layout. Now, the measurements are in the triangle on the left, below. Your neighbor’s kitchen is in blue on the right. Are the kitchen triangles congruent now?
ASA Congruence

ASA refers to Angle-Side-Angle. The placement of the word Side is important because it indicates that the side that you are given is between the two angles.

Consider the question: If I have two angles that are 45° and 60° and the side between them is 5 in, can I construct only one triangle?

Investigation 4-4: Constructing a Triangle Given Two Angles and Included Side

Tools Needed: protractor, pencil, ruler, and paper

1. Draw the side (5 in) horizontally, about halfway down the page.

 ![Drawing](image)

 The drawings in this investigation are to scale.

2. At the left endpoint of your line segment, use the protractor to measure the 45° angle. Mark this measurement and draw a ray from the left endpoint through the 45° mark.

3. At the right endpoint of your line segment, use the protractor to measure the 60° angle. Mark this measurement and draw a ray from the left endpoint through the 60° mark. Extend this ray so that it crosses through the ray from Step 2.

4. Erase the extra parts of the rays from Steps 2 and 3 to leave only the triangle.

Can you draw another triangle, with these measurements that looks different? NO. **Only one triangle can be created from any given two angle measures and the INCLUDED side.**

Angle-Side-Angle (ASA) Congruence Postulate: If two angles and the included side in one triangle are congruent to two angles and the included side in another triangle, then the two triangles are congruent.
\[\angle A \cong \angle X, \angle B \cong \angle Y, \text{ and } AB \cong XY, \text{ then } \triangle ABC \cong \triangle XYZ. \]

Example 1: What information do you need to prove that these two triangles are congruent using the ASA Postulate?

![Diagram of two triangles](image)

a) \(AB \cong UT\)

b) \(AC \cong UV\)

c) \(BC \cong TV\)

d) \(\angle B \cong \angle T\)

Solution: For ASA, we need the side between the two given angles, which is \(AC\) and \(UV\). The answer is b.

Example 2: Write a 2-column proof.

Given: \(\angle C \cong \angle E, \ AC \cong AE\)

Prove: \(\triangle ACF \cong \triangle AEB\)

![Diagram of two triangles](image)

Solution:

Table 4.15:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle C \cong \angle E, \ AC \cong AE)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle A \cong \angle A)</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>3. (\triangle ACF \cong \triangle AEB)</td>
<td>ASA</td>
</tr>
</tbody>
</table>
AAS Congruence

A variation on ASA is AAS, which is Angle-Angle-Side. For ASA you need two angles and the side between them. But, if you know two pairs of angles are congruent, the third pair will also be congruent by the 3rd Angle Theorem. This means you can prove two triangles are congruent when you have any two pairs of corresponding angles and a pair of sides.

ASA

AAS

Angle-Angle-Side (AAS) Congruence Theorem: If two angles and a non-included side in one triangle are congruent to two angles and a non-included side in another triangle, then the triangles are congruent.

Proof of AAS Theorem

Given: \(\angle A \cong \angle Y, \angle B \cong \angle Z, \overline{AC} \cong \overline{XY} \)

Prove: \(\triangle ABC \cong \triangle YZX \)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle A \cong \angle Y, \angle B \cong \angle Z, \overline{AC} \cong \overline{XY})</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle C \cong \angle X)</td>
<td>3rd Angle Theorem</td>
</tr>
<tr>
<td>3. (\triangle ABC \cong \triangle YZX)</td>
<td>ASA</td>
</tr>
</tbody>
</table>
By proving \(\triangle ABC \cong \triangle YZX \) with ASA, we have also proved that the AAS Theorem is true.

Example 3: What information do you need to prove that these two triangles are congruent using:

a) ASA?

b) AAS?

c) SAS?

Solution:

a) For ASA, we need the angles on the other side of \(EF \) and \(QR \).

b) For AAS, we would need the other angle.

c) For SAS, we need the side on the other side of \(\angle E \) and \(\angle R \).

Example 4: Can you prove that the following triangles are congruent? Why or why not?

Solution: We cannot show the triangles are congruent because \(KL \) and \(ST \) are not corresponding, even though they are congruent. To determine if \(KL \) and \(ST \) are corresponding, look at the angles around them, \(\angle K \) and \(\angle L \) and \(\angle S \) and \(\angle T \). \(\angle K \) has one arc and \(\angle L \) is unmarked. \(\angle S \) has two arcs and \(\angle T \) is unmarked. In order to use AAS, \(\angle S \) needs to be congruent to \(\angle K \).

Example 5: Write a 2-column proof.

Given: \(BD \) is an angle bisector of \(\angle CDA \), \(\angle C \cong \angle A \\
Prove: \(\triangle CBD \cong \triangle ABD \)

Solution:
Table 4.17:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. BD is an angle bisector of $\angle CDA$, $\angle C \cong \angle A$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle CDB \cong \angle ADB$</td>
<td>Definition of an Angle Bisector</td>
</tr>
<tr>
<td>3. $DB \cong DB$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>4. $\triangle CBD \cong \triangle ABD$</td>
<td>AAS</td>
</tr>
</tbody>
</table>

Hypotenuse-Leg

So far, the congruence postulates we have used will work for any triangle. The last congruence theorem can only be used on right triangles. A right triangle has exactly one right angle. The two sides adjacent to the right angle are called legs and the side opposite the right angle is called the hypotenuse.

You may or may not know the Pythagorean Theorem, which says, for any right triangle, this equation is true:

$$(\text{leg})^2 + (\text{leg})^2 = (\text{hypotenuse})^2$$

What this means is that if you are given two sides of a right triangle, you can always find the third. Therefore, if you have two sides of a right triangle are congruent to two sides of another right triangle; you can conclude that third sides are also congruent.

The Hypotenuse-Leg (HL) Congruence Theorem is a shortcut of this process. **HL Congruence Theorem:** If the hypotenuse and leg in one right triangle are congruent to the hypotenuse and leg in another right triangle, then the two triangles are congruent.

$\triangle ABC$ and $\triangle XYZ$ are both right triangles and $\overline{AB} \cong \overline{XY}$ and $\overline{BC} \cong \overline{YZ}$ then $\triangle ABC \cong \triangle XYZ$.

Example 6: What information would you need to prove that these two triangles were congruent using the:

a) HL Theorem?

b) SAS Theorem?
4.4. Triangle Congruence using ASA, AAS, and HL

Solution:

a) For HL, you need the hypotenuses to be congruent. $AC \cong MN$.
b) To use SAS, we would need the other legs to be congruent. $AB \cong ML$.

AAA and SSA Relationships There are two other side-angle relationships that we have not discussed: AAA and SSA.

AAA implies that all the angles are congruent.
As you can see, $\triangle ABC$ and $\triangle PRQ$ are not congruent, even though all the angles are.
SSA relationships do not prove congruence either. See $\triangle ABC$ and $\triangle DEF$ below.

Because $\angle B$ and $\angle D$ are not the included angles between the congruent sides, we cannot prove that these two triangles are congruent.

Recap

Table 4.18:

<table>
<thead>
<tr>
<th>Side-Angle Relationship</th>
<th>Picture</th>
<th>Determine Congruence?</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSS</td>
<td></td>
<td>Yes (\triangle ABC \cong \triangle XYZ)</td>
</tr>
</tbody>
</table>
Table 4.18: (continued)

<table>
<thead>
<tr>
<th>Side-Angle Relationship</th>
<th>Picture</th>
<th>Determine Congruence?</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS</td>
<td></td>
<td>Yes (\triangle ABC \cong \triangle XYZ)</td>
</tr>
<tr>
<td>ASA</td>
<td></td>
<td>Yes (\triangle ABC \cong \triangle XYZ)</td>
</tr>
<tr>
<td>AAS (or SAA)</td>
<td></td>
<td>Yes (\triangle ABC \cong \triangle YZX)</td>
</tr>
<tr>
<td>HL</td>
<td></td>
<td>Yes, Right Triangles Only (\triangle ABC \cong \triangle XYZ)</td>
</tr>
<tr>
<td>SSA</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>AAA</td>
<td></td>
<td>NO</td>
</tr>
</tbody>
</table>

Example 7: Write a 2-column proof.

Given: \(\overline{AB} \parallel \overline{ED}, \angle C \cong \angle F, \overline{AB} \cong \overline{ED}\)

Prove: \(\overline{AF} \cong \overline{CD}\)

Solution:

Table 4.19:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\overline{AB} \parallel \overline{ED}, \angle C \cong \angle F, \overline{AB} \cong \overline{ED})</td>
<td>Given</td>
</tr>
</tbody>
</table>
4.4. Triangle Congruence using ASA, AAS, and HL

Table 4.19: (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. (\angle ABE \cong \angle DDB)</td>
<td>Alternate Interior Angles Theorem</td>
</tr>
<tr>
<td>3. (\triangle ABF \cong \triangle DEC)</td>
<td>ASA</td>
</tr>
<tr>
<td>4. (AF \cong CD)</td>
<td>CPCTC</td>
</tr>
</tbody>
</table>

Prove Move: At the beginning of this chapter we introduced CPCTC. Now, it can be used in a proof once two triangles are proved congruent. It is used to prove the parts of congruent triangles are congruent.

Know What? Revisited Even though we do not know all of the angle measures in the two triangles, we can find the missing angles by using the Third Angle Theorem. In your parents’ kitchen, the missing angle is \(39^\circ \). The missing angle in your neighbor’s kitchen is \(50^\circ \). From this, we can conclude that the two kitchens are now congruent, either by ASA or AAS.

Review Questions

- Questions 1-10 are similar to Examples 1, 3, 4, and 6.
- Questions 11-20 are review and use the definitions and theorems explained in this section.
- Question 21-26 are similar to Examples 1, 3, 4 and 6.
- Questions 27 and 28 are similar to Examples 2 and 5.
- Questions 29-31 are similar to Example 4 and Investigation 4-4.

For questions 1-10, determine if the triangles are congruent. If they are, write the congruence statement and which congruence postulate or theorem you used.
For questions 11-15, use the picture to the right and the given information below.
4.4. Triangle Congruence using ASA, AAS, and HL

Given: $DB \perp AC$, DB is the angle bisector of $\angle CDA$

11. From $DB \perp AC$, which angles are congruent and why?
12. Because DB is the angle bisector of $\angle CDA$, what two angles are congruent?
13. From looking at the picture, what additional piece of information are you given? Is this enough to prove the two triangles are congruent?
14. Write a 2-column proof to prove $\triangle CDB \cong \triangle ADB$, using #11-13.
15. What would be your reason for $\angle C \cong \angle A$?

For questions 16-20, use the picture to the right and the given information.

Given: $LP \parallel NO$, $LP \cong NO$

16. From $LP \parallel NO$, which angles are congruent and why?
17. From looking at the picture, what additional piece of information can you conclude?
18. Write a 2-column proof to prove $\triangle LMP \cong \triangle OMN$.
19. What would be your reason for $LM \cong MO$?
20. Fill in the blanks for the proof below. Use the given from above. Prove: M is the midpoint of PN.

Table 4.20:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $LP \parallel NO$, $LP \cong NO$</td>
<td>Given</td>
</tr>
<tr>
<td>2.</td>
<td>Alternate Interior Angles</td>
</tr>
<tr>
<td>3.</td>
<td>ASA</td>
</tr>
<tr>
<td>4. $LM \cong MO$</td>
<td></td>
</tr>
<tr>
<td>5. M is the midpoint of PN.</td>
<td></td>
</tr>
</tbody>
</table>

Determine the additional piece of information needed to show the two triangles are congruent by the given postulate.

21. AAS

22. ASA
23. ASA

24. AAS

25. HL

26. SAS

Fill in the blanks in the proofs below.

27. **Given:** $SV \perp WUT$ is the midpoint of SV and WU **Prove:** $WS \cong UV$
4.4. Triangle Congruence using ASA, AAS, and HL

Table 4.21:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. $\angle STW$ and $\angle UTV$ are right angles</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4. $ST \cong TV$, $WT \cong TU$</td>
<td></td>
</tr>
<tr>
<td>5. $\triangle STW \cong \triangle UTV$</td>
<td></td>
</tr>
<tr>
<td>6. $WS \cong UV$</td>
<td></td>
</tr>
</tbody>
</table>

28. Given: $\angle K \cong \angle T$, EI is the angle bisector of $\angle KET$
 Prove: EI is the angle bisector of $\angle KIT$

![Diagram]

Table 4.22:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3. $EI \cong EI$</td>
<td>Definition of an angle bisector</td>
</tr>
<tr>
<td>4. $\triangle KEI \cong \triangle T EI$</td>
<td></td>
</tr>
<tr>
<td>5. $\angle KIE \cong \angle TIE$</td>
<td></td>
</tr>
<tr>
<td>6. EI is the angle bisector of $\angle KIT$</td>
<td></td>
</tr>
</tbody>
</table>

Construction Let’s see if we can construct two different triangles like $\triangle KLM$ and $\triangle STU$ from Example 4.

![Diagram]

29. Look at $\triangle KLM$.
 a. If $m\angle K = 70^\circ$ and $m\angle M = 60^\circ$, what is $m\angle L$?
 b. If $KL = 2$ in, construct $\triangle KLM$ using $\angle L$, $\angle K$, KL and Investigation 4-4 (ASA Triangle construction).

30. Look at $\triangle STU$.
 a. If $m\angle S = 60^\circ$ and $m\angle U = 70^\circ$, what is $m\angle T$?
 b. If $ST = 2$ in, construct $\triangle STU$ using $\angle S$, $\angle T$, ST and Investigation 4-4 (ASA Triangle construction).

31. Are the two triangles congruent?
Review Queue Answers

1.
 a. $AD \cong DC, AB \cong BC$
 b. Yes, by the Reflexive Property
 c. $\triangle DAB \cong \triangle DCB$ by SSS

2.
 a. $\angle L \cong \angle N$ and $\angle M \cong \angle P$ by the Alternate Interior Angles Theorem
 b. $\angle PON \cong \angle LOM$ by Vertical Angles or the 3rd Angle Theorem
 c. No, no markings or midpoints
 d. No, no congruent sides.

3.
 a. Yes, CPCTC
 b. No, these sides do not line up in the congruence statement.
4.5 Isosceles and Equilateral Triangles

Learning Objectives

- Understand the properties of isosceles and equilateral triangles.
- Use the Base Angles Theorem and its converse.
- Understand that an equilateral triangle is also equiangular.

Review Queue

Find the value of x and/or y.

1. $\triangle ABC$ with $\angle A = (8x + 5)^\circ$, $\angle B = (5x - 1)^\circ$, and $\angle C = (4x + 6)^\circ$.

2. $\triangle DEF$ with $\angle D = 70^\circ$ and $\angle E = y^\circ$.

3. $\triangle GHI$ with $\angle G = 8^\circ$ and $\angle I = x - 3^\circ$.

4. If a triangle is equiangular, what is the measure of each angle?

Know What? Your parents now want to redo the bathroom. To the right are 3 of the tiles they would like to place in the shower. Each blue and green triangle is an equilateral triangle. What shape is each dark blue polygon? Find the number of degrees in each of these figures?
Isosceles Triangle Properties

An isosceles triangle is a triangle that has at least two congruent sides. The congruent sides of the isosceles triangle are called the legs. The other side is called the base. The angles between the base and the legs are called base angles. The angle made by the two legs is called the vertex angle.

Investigation 4-5: Isosceles Triangle Construction

Tools Needed: pencil, paper, compass, ruler, protractor

1. Refer back to Investigation 4-2. Using your compass and ruler, draw an isosceles triangle with sides of 3 in, 5 in and 5 in. Draw the 3 in side (the base) horizontally at least 6 inches down the page.

2. Now that you have an isosceles triangle, use your protractor to measure the base angles and the vertex angle. The base angles should each be 72.5° and the vertex angle should be 35°.

We can generalize this investigation for all isosceles triangles.

Base Angles Theorem: The base angles of an isosceles triangle are congruent.
4.5. Isosceles and Equilateral Triangles

For $\triangle DEF$, if $DE \cong EF$, then $\angle D \cong \angle F$.

![Diagram of an isosceles triangle]

To prove the Base Angles Theorem, we need to draw the angle bisector (Investigation 1-5) of $\angle E$.

Given: Isosceles triangle $\triangle DEF$ above, with $DE \cong EF$.

Prove: $\angle D \cong \angle F$

Table 4.23:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Isosceles triangle $\triangle DEF$ with $DE \cong EF$</td>
<td>Given</td>
</tr>
<tr>
<td>2. Construct angle bisector EG of $\angle E$</td>
<td>Every angle has one angle bisector</td>
</tr>
<tr>
<td>3. $\angle DEG \cong \angle FEG$</td>
<td>Definition of an angle bisector</td>
</tr>
<tr>
<td>4. $EG \cong EG$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>5. $\triangle DEG \cong \triangle FEG$</td>
<td>SAS</td>
</tr>
<tr>
<td>6. $\angle D \cong \angle F$</td>
<td>CPCTC</td>
</tr>
</tbody>
</table>

Let’s take a further look at the picture from step 2 of our proof.

![Diagram showing the angle bisector and additional angles]

Because $\triangle DEG \cong \triangle FEG$, we know $\angle EGD \cong \angle EGF$ by CPCTC. These two angles are also a linear pair, so 90° each and $EG \perp DF$.

Additionally, $DG \cong GF$ by CPCTC, so G is the midpoint of DF. This means that EG is the **perpendicular bisector** of DF.

Isosceles Triangle Theorem: The angle bisector of the vertex angle in an isosceles triangle is also the perpendicular bisector of the base.
Note this is ONLY true of the vertex angle. We will prove this theorem in the review questions.

Example 1: Which two angles are congruent?

Solution: This is an isosceles triangle. The congruent angles, are opposite the congruent sides. From the arrows we see that $\angle S \cong \angle U$.

Example 2: If an isosceles triangle has base angles with measures of 47°, what is the measure of the vertex angle?

Solution: Draw a picture and set up an equation to solve for the vertex angle, v.

$$47^\circ + 47^\circ + v = 180^\circ$$
$$v = 180^\circ - 47^\circ - 47^\circ$$
$$v = 86^\circ$$

Example 3: If an isosceles triangle has a vertex angle with a measure of 116°, what is the measure of each base angle?

Solution: Draw a picture and set up and equation to solve for the base angles, b.

$$116^\circ + b + b = 180^\circ$$
$$2b = 64^\circ$$
$$b = 32^\circ$$
The converses of the Base Angles Theorem and the Isosceles Triangle Theorem are both true.

Base Angles Theorem Converse: If two angles in a triangle are congruent, then the opposite sides are also congruent.

For \(\triangle DEF \), if \(\angle D \cong \angle F \), then \(DE \cong EF \).

Isosceles Triangle Theorem Converse: The perpendicular bisector of the base of an isosceles triangle is also the angle bisector of the vertex angle.

For isosceles \(\triangle DEF \), if \(EG \perp DF \) and \(DG \cong GF \), then \(\angle DEG \cong \angle FEG \).

Equilateral Triangles By definition, all sides in an equilateral triangle have the same length.

Investigation 4-6: Constructing an Equilateral Triangle

Tools Needed: pencil, paper, compass, ruler, protractor

1. Because all the sides of an equilateral triangle are equal, pick one length to be all the sides of the triangle. Measure this length and draw it horizontally on you paper.

2. Put the pointer of your compass on the left endpoint of the line you drew in Step 1. Open the compass to be the same width as this line. Make an arc above the line. Repeat Step 2 on the right endpoint.

4. Connect each endpoint with the arc intersections to make the equilateral triangle.
Use the protractor to measure each angle of your constructed equilateral triangle. What do you notice?

From the Base Angles Theorem, the angles opposite congruent sides in an isosceles triangle are congruent. So, if all three sides of the triangle are congruent, then all of the angles are congruent, 60° each.

Equilateral Triangle Theorem: All equilateral triangles are also equiangular. Also, all equiangular triangles are also equilateral.

If $\overline{AB} \cong \overline{BC} \cong \overline{AC}$, then $\angle A \cong \angle B \cong \angle C$.

If $\angle A \cong \angle B \cong \angle C$, then $\overline{AB} \cong \overline{BC} \cong \overline{AC}$.

Example 4: Algebra Connection Find the value of x.

Solution: Because this is an equilateral triangle $3x - 1 = 11$. Solve for x.

\[
3x - 1 = 11 \\
3x = 12 \\
x = 4
\]

Example 5: Algebra Connection Find the value of x and the measure of each angle.
4.5. Isosceles and Equilateral Triangles

Solution: Similar to Example 4, the two angles are equal, so set them equal to each other and solve for x.

\[
(4x + 12)° = (5x - 3)°
\]

\[
15° = x
\]

Substitute $x = 15°$; the base angles are $4(15°) + 12$, or $72°$. The vertex angle is $180° - 72° - 72° = 36°$.

Know What? Revisited Let’s focus on one tile. First, these triangles are all equilateral, so this is an equilateral hexagon (6 sides). Second, we now know that every equilateral triangle is also equiangular, so every triangle within this tile has 3 $60°$ angles. This makes our equilateral hexagon also equiangular, with each angle measuring $120°$. Because there are 6 angles, the sum of the angles in a hexagon are $6 \cdot 120°$ or $720°$.

Review Questions

- Questions 1-5 are similar to Investigations 4-5 and 4-6.
- Questions 6-14 are similar to Examples 2-5.
- Question 15 uses the definition of an equilateral triangle.
- Questions 16-20 use the definition of an isosceles triangle.
- Question 21 is similar to Examples 2 and 3.
- Questions 22-25 are proofs and use definitions and theorems learned in this section.
- Questions 26-30 use the distance formula.

Constructions For questions 1-5, use your compass and ruler to:

1. Draw an isosceles triangle with sides 3.5 in, 3.5 in, and 6 in.
2. Draw an isosceles triangle that has a vertex angle of $100°$ and legs with length of 4 cm. (you will also need your protractor for this one)
3. Draw an equilateral triangle with sides of length 7 cm.
4. Using what you know about constructing an equilateral triangle, construct (without a protractor) a $60°$ angle.
5. Draw an isosceles right triangle. What is the measure of the base angles?

For questions 6-14, find the measure of x and/or y.

[Diagram of a hexagon with equilateral triangles inside, showing 60° angles]
15. \(\triangle EQG \) is an equilateral triangle. If \(EU \) bisects \(\angle LEQ \), find:
4.5. Isosceles and Equilateral Triangles

- \(a. \, m\angle EUL \)
- \(b. \, m\angle UEL \)
- \(c. \, m\angle ELQ \)
- \(d. \) If \(EQ = 4 \), find \(LU \).

Determine if the following statements are true or false.

16. Base angles of an isosceles triangle are congruent.
17. Base angles of an isosceles triangle are complementary.
18. Base angles of an isosceles triangle can be equal to the vertex angle.
19. Base angles of an isosceles triangle can be right angles.
20. Base angles of an isosceles triangle are acute.
21. In the diagram below, \(l_1 \parallel l_2 \). Find all of the lettered angles.

Fill in the blanks in the proofs below.

22. \textbf{Given:} Isosceles \(\triangle CIS \), with base angles \(\angle C \) and \(\angle SIO \) is the angle bisector of \(\angle CIS \). \textbf{Prove:} \(\overline{TO} \) is the perpendicular bisector of \(CS \)

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Statement} & \textbf{Reason} \\
\hline
1. & Given \\
2. & Base Angles Theorem \\
3. \(\angle CIO \cong \angle SIO \) & \\
\hline
\end{tabular}
\end{table}
Table 4.24: (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. (\triangle CIO \cong \triangle SIO)</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>5. (\overline{CO} \cong \overline{OS})</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CPCTC</td>
</tr>
<tr>
<td>8. (\angle IOC) and (\angle IOS) are supplementary</td>
<td>Congruent Supplements Theorem</td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>10. (\overline{IO}) is the perpendicular bisector of (\overline{CS})</td>
<td></td>
</tr>
</tbody>
</table>

23. **Given:** Equilateral \(\triangle RST\) with \(\overline{RT} \cong \overline{ST} \cong \overline{RS}\)

Prove: \(\triangle RST\) is equiangular

![Diagram of equilateral triangle RST](image)

Table 4.25:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Given</td>
</tr>
<tr>
<td>2.</td>
<td>Base Angles Theorem</td>
</tr>
<tr>
<td>3.</td>
<td>Base Angles Theorem</td>
</tr>
<tr>
<td>4.</td>
<td>Transitive PoC</td>
</tr>
<tr>
<td>5. (\triangle RST) is equiangular</td>
<td></td>
</tr>
</tbody>
</table>

24. **Given:** Isosceles \(\triangle ICS\) with \(\angle C\) and \(\overline{I O S}\) is the perpendicular bisector of \(\overline{CS}\)

Prove: \(\overline{IO}\) is the angle bisector of \(\angle CIS\)

![Diagram of isosceles triangle ICS](image)

Table 4.26:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. (\angle C \cong \angle S)</td>
<td></td>
</tr>
<tr>
<td>3. (\overline{CO} \cong \overline{OS})</td>
<td></td>
</tr>
<tr>
<td>4. (m\angle IOC = m\angle IOS = 90^\circ)</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>CPCTC</td>
</tr>
<tr>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>7. (\overline{IO}) is the angle bisector of (\angle CIS)</td>
<td></td>
</tr>
</tbody>
</table>
25. Given: Isosceles $\triangle ABC$ with base angles $\angle B$ and $\angle C$ Isosceles $\triangle XYZ$ with base angles $\angle Y$ and $\angle Z$. $\angle C \cong \angle Z$, $BC \cong YZ$.
Prove: $\triangle ABC \cong \triangle XYZ$

Table 4.27:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. $\angle B \cong \angle C$, $\angle Y \cong \angle Z$</td>
<td></td>
</tr>
<tr>
<td>3. $\angle B \cong \angle Y$</td>
<td></td>
</tr>
<tr>
<td>4. $\triangle ABC \cong \triangle XYZ$</td>
<td></td>
</tr>
</tbody>
</table>

Coordinate Plane Geometry On the $x-y$ plane, plot the coordinates and determine if the given three points make a scalene or isosceles triangle.

26. (-2, 1), (1, -2), (-5, -2)
27. (-2, 5), (2, 4), (0, -1)
28. (6, 9), (12, 3), (3, -6)
29. (-10, -5), (-8, 5), (2, 3)
30. (-1, 2), (7, 2), (3, 9)

Review Queue Answers

1. $(5x - 1)^\circ + (8x + 5)^\circ + (4x + 6)^\circ = 180^\circ$
 $17x + 10 = 180^\circ$
 $17x = 170^\circ$
 $x = 10^\circ$

2. $x = 40^\circ$, $y = 70^\circ$

3. $x - 3 = 8$
 $x = 5$

4. Each angle is $\frac{180^\circ}{3}$, or 60°
Chapter 4 Review

Symbols Toolbox

Congruent Triangles and their corresponding parts

Definitions, Postulates, and Theorems

Triangle Sums

- Interior Angles
- Vertex
- Triangle Sum Theorem
- Exterior Angle
- Exterior Angle Sum Theorem
- Remote Interior Angles
- Exterior Angle Theorem

Congruent Figures

- Congruent Triangles
- Congruence Statements
- Third Angle Theorem
- Reflexive Property of Congruence
- Symmetric Property of Congruence
- Transitive Property of Congruence

Triangle Congruence using SSS and SAS

- Side-Side-Side (SSS) Triangle Congruence Postulate
- Included Angle
- Side-Angle-Side (SAS) Triangle Congruence Postulate
- Distance Formula

Triangle Congruence using ASA, AAS, and HL
4.6. Chapter 4 Review

- Angle-Side-Angle (ASA) Congruence Postulate
- Angle-Angle-Side (AAS) Congruence Theorem
- Hypotenuse
- Legs (of a right triangle)
- HL Congruence Theorem

Isosceles and Equilateral Triangles

- Base
- Base Angles
- Vertex Angle
- Legs (of an isosceles triangle)
- Base Angles Theorem
- Isosceles Triangle Theorem
- Base Angles Theorem Converse
- Isosceles Triangle Theorem Converse
- Equilateral Triangles Theorem

Review

For each pair of triangles, write what needs to be congruent in order for the triangles to be congruent. Then, write the congruence statement for the triangles.

1. HL

![HL Diagram]

2. ASA

![ASA Diagram]

3. AAS

![AAS Diagram]
4. SSS

5. SAS

Using the pictures below, determine which theorem, postulate or definition that supports each statement below.

6. \(m\angle 1 + m\angle 2 = 180^\circ \)
7. \(\angle 5 \cong \angle 6 \)
8. \(m\angle 1 + m\angle 4 + m\angle 3 \)
9. \(m\angle 8 = 60^\circ \)
10. \(m\angle 5 + m\angle 6 + m\angle 7 = 180^\circ \)
11. \(\angle 8 \cong \angle 9 \cong \angle 10 \)
12. If \(m\angle 7 = 90^\circ \), then \(m\angle 5 = m\angle 6 = 45^\circ \)

Texas Instruments Resources

In the CK-12 Texas Instruments Geometry FlexBook® resource, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9689.
Keywords: Define, write theorems, and/or draw a diagram for each word below.

1st Section: Triangle Sums

Interior Angles
Vertex
Triangle Sum Theorem
Exterior Angle
Exterior Angle Sum Theorem
Remote Interior Angles
Exterior Angle Theorem

Homework:

2nd Section: Congruent Figures

Congruent Triangles
Congruence Statements
Third Angle Theorem
Reflexive Property of Congruence
Symmetric Property of Congruence
Transitive Property of Congruence

Homework:

3rd Section: Triangle Congruence using SSS and SAS

Side-Side-Side (SSS) Triangle Congruence Postulate
Included Angle
Side-Angle-Side (SAS) Triangle Congruence Postulate
Distance Formula

Homework:
4th Section: Triangle Congruence using ASA, AAS, and HL

Angle-Side-Angle (ASA) Congruence Postulate
Angle-Angle-Side (AAS) Congruence Theorem
Hypotenuse
Legs (of a right triangle)
HL Congruence Theorem

Homework:

5th Section: Isosceles and Equilateral Triangles

Base
Base Angles
Vertex Angle
Legs (of an isosceles triangle)
Base Angles Theorem
Isosceles Triangle Theorem
Base Angles Theorem Converse
Isosceles Triangle Theorem Converse
Equilateral Triangle Theorem

Homework:
In this chapter we will explore the properties of midsegments, perpendicular bisectors, angle bisectors, medians, and altitudes. Next, we will look at the relationship of the sides of a triangle and how the sides of one triangle can compare to another.
5.1 Midsegments

Learning Objectives

- Define midsegment.
- Use the Midsegment Theorem.

Review Queue

Find the midpoint between the given points.

1. (-4, 1) and (6, 7)
2. (5, -3) and (11, 5)
3. Find the equation of the line between (-2, -3) and (-1, 1).
4. Find the equation of the line that is parallel to the line from #3 through (2, -7).

Know What? A fractal is a repeated design using the same shape (or shapes) of different sizes. Below, is an example of the first few steps of a fractal. Draw the next figure in the pattern.

Defining Midsegment

Midsegment: A line segment that connects two midpoints of the sides of a triangle.

DF is the midsegment between AB and BC.

\[\text{Diagram showing midsegment between vertices} \]
The tic marks show that \(D \) and \(F \) are midpoints.

\[
\overrightarrow{AD} \cong \overrightarrow{DB} \text{ and } \overrightarrow{BF} \cong \overrightarrow{FC}
\]

Example 1: Draw the midsegment \(\overrightarrow{DE} \) between \(\overrightarrow{AB} \) and \(\overrightarrow{AC} \) for \(\triangle ABC \) above.

Solution: Find the midpoints of \(\overrightarrow{AB} \) and \(\overrightarrow{AC} \) using your ruler. Label these points \(D \) and \(E \). Connect them to create the midsegment.

![Diagram of \(\triangle ABC \) with midsegment \(DE \)]

Example 2: You now have all three midpoints of \(\triangle ABC \). Draw in midsegment \(\overrightarrow{DF} \) and \(\overrightarrow{FE} \).

Solution:

![Diagram of \(\triangle ABC \) with midsegments \(DF \) and \(FE \)]

For every triangle there are three midsegments.

Midsegments in the Plane

Let’s transfer what we know about **midpoints** in the \(x-y \) plane to **midsegments** in the \(x-y \) plane. We will need to use the midpoint formula, \(
\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
\).

Example 3: The vertices of \(\triangle LMN \) are \(L(4, 5) \), \(M(-2, -7) \) and \(N(-8, 3) \). Find the midpoints of all three sides, label them \(O \), \(P \) and \(Q \). Then, graph the triangle, plot the midpoints and draw the midsegments.

Solution: Use the midpoint formula 3 times to find all the midpoints.

\[
L \text{ and } M = \left(\frac{4+(-2)}{2}, \frac{5+(-7)}{2} \right) = (1, -1) \text{ point } O
\]

\[
M \text{ and } N = \left(\frac{-2+(-8)}{2}, \frac{-7+3}{2} \right) = (-5, -2), \text{ point } P
\]

\[
L \text{ and } N = \left(\frac{4+(-8)}{2}, \frac{5+3}{2} \right) = (-2, 4), \text{ point } Q
\]

The graph is to the right.
Example 4: Find the slopes of NM and QO.

Solution: The slope of NM is \(\frac{-7 - 3}{-2 - (-8)} = \frac{-10}{6} = -\frac{5}{3} \). The slope of QO is \(\frac{-1 - 4}{1 - (-2)} = -\frac{5}{3} \).

From this we can conclude that $NM \parallel QO$. If we were to find the slopes of the other sides and midsegments, we would find $LM \parallel QP$ and $NL \parallel PO$.

Example 5: Find NM and QO.

Solution: Now, we need to find the lengths of NM and QO. Use the distance formula.

\[
NM = \sqrt{(-7 - 3)^2 + (-2 - (-8))^2} = \sqrt{(-10)^2 + 6^2} = \sqrt{100 + 36} = \sqrt{136} \approx 11.66
\]

\[
QO = \sqrt{(1 - (-2))^2 + (-1 - 4)^2} = \sqrt{3^2 + (-5)^2} = \sqrt{9 + 25} = \sqrt{34} \approx 5.83
\]

From this we can conclude that QO is half of NM. If we were to find the lengths of the other sides and midsegments, we would find that OP is half of NL and QP is half of LM.

The Midsegment Theorem

The conclusions drawn in Examples 4 and 5 can be combined into the Midsegment Theorem.

Midsegment Theorem: The midsegment of a triangle is half the length of the side it is parallel to.

If DF is a midsegment of $\triangle ABC$, then $DF = \frac{1}{2}AC = AE = EC$ and $DF \parallel AC$.
Example 6a: Mark all the congruent segments on $\triangle ABC$ with midpoints D, E, and F.

Solution: Drawing in all three midsegments, we have:

![Diagram](image)

Also, this means the four triangles are congruent by SSS.

Example 6b: Mark all the parallel lines on $\triangle ABC$, with midpoints D, E, and F.

Solution:

To play with the properties of midsegments, go to http://www.mathopenref.com/trianglemidsegment.html.

Example 7: M, N, and O are the midpoints of the sides of the triangle.

Find

a) MN

b) XY

c) The perimeter of $\triangle XYZ$

Solution: Use the Midsegment Theorem.

a) $MN = OZ = 5$

b) $XY = 2(ON) = 2 \cdot 4 = 8$

c) Add up the three sides of $\triangle XYZ$ to find the perimeter.

$$XY + YZ + XZ = 2 \cdot 4 + 2 \cdot 3 + 2 \cdot 5 = 8 + 6 + 10 = 24$$
Remember: No line segment over MN means length or distance.

Example 8: Algebra Connection Find the value of x and AB. A and B are midpoints.

Solution: $AB = 34 \div 2 = 17$. To find x, set $3x - 1$ equal to 17.

\[
\begin{align*}
3x - 1 &= 17 \\
3x &= 18 \\
x &= 6
\end{align*}
\]

Know What? Revisited To the left is a picture of the 4^{th} figure in the fractal pattern.

Review Questions

- Questions 1-5 use the definition of a midsegment and the Midsegment Theorem.
- Questions 6-9 and 18 are similar to Example 7.
- Questions 10-17 are similar to Example 8.
- Questions 19-22 are similar to Example 3.
- Questions 23-30 are similar to Examples 3, 4, and 5.

Determine if each statement is true or false.

1. The endpoints of a midsegment are midpoints.
2. A midsegment is parallel to the side of the triangle that it does not intersect.
3. There are three congruent triangles formed by the midsegments and sides of a triangle.
4. If a line passes through two sides of a triangle and is parallel to the third side, then it is a midsegment.
5. There are three midsegments in every triangle.

R, S, T, and U are midpoints of the sides of $\triangle XPO$ and $\triangle YPO$.
6. If $OP = 12$, find RS and TU.
7. If $RS = 8$, find TU.
8. If $RS = 2x$, and $OP = 20$, find x and TU.
9. If $OP = 4x$ and $RS = 6x - 8$, find x.

For questions 10-17, find the indicated variable(s). You may assume that all line segments within a triangle are midsegments.
18. The sides of \(\triangle XYZ \) are 26, 38, and 42. \(\triangle ABC \) is formed by joining the midpoints of \(\triangle XYZ \).

a. What are the lengths of the sides of \(\triangle ABC \)?
b. Find the perimeter of \(\triangle ABC \).
c. Find the perimeter of \(\triangle XYZ \).
d. What is the relationship between the perimeter of a triangle and the perimeter of the triangle formed by connecting its midpoints?

Coordinate Geometry Given the vertices of \(\triangle ABC \) below find the midpoints of each side.

19. \(A(5, -2), B(9, 4) \) and \(C(-3, 8) \)
20. \(A(-10, 1), B(4, 11) \) and \(C(0, -7) \)
21. \(A(-1, 3), B(5, 7) \) and \(C(9, -5) \)
22. \(A(-4, -15), B(2, -1) \) and \(C(-20, 11) \)

Multi-Step Problem The midpoints of the sides of a triangle are \(A(1, 5), B(4, -2), \) and \(C(-5, 1) \). Answer the following questions. The graph is below.
23. Find the slope of AB, BC, and AC.
24. The side that passes through A should be parallel to which midsegment? ($\triangle ABC$ are all midsegments of a triangle).
25. Using your answer from #24, take the slope of BC and use the “rise over run” in either direction to create a parallel line to BC that passes through A. Extend it with a ruler.
26. Repeat #24 and #25 with B and C. What are coordinates of the larger triangle?

Multi-Step Problem The midpoints of the sides of $\triangle RST$ are $G(0, -2)$, $H(9, 1)$, and $I(6, -5)$. Answer the following questions.

27. Find the slope of GH, HI, and GI.
28. Plot the three midpoints and connect them to form midsegment triangle, $\triangle GHI$.
29. Using the slopes, find the coordinates of the vertices of $\triangle RST$. (#22 above)
30. Find GH using the distance formula. Then, find the length of the sides it is parallel to. What should happen?

Review Queue Answers

1. $\left(\frac{-4+6}{2}, \frac{1+7}{2}\right) = (1, 4)$
2. $\left(\frac{5+11}{2}, \frac{-3+5}{2}\right) = (8, 1)$
3. $m = \frac{3 - (-1)}{-2 - 1} = \frac{4}{-3} = \frac{-4}{3} \quad y = mx + b$
 $-3 = 4(-2) + b$
 $b = 5, \quad y = 4x + 5$
4. $-7 = 4(2) + b$
 $b = -15, \quad y = 4x - 15$
5.2 Perpendicular Bisectors and Angle Bisectors in Triangles

Learning Objectives

- Apply the Perpendicular Bisector Theorem and its converse.
- Apply the Angle Bisector Theorem and its converse.
- Analyze properties of perpendicular bisectors and angle bisectors.

Review Queue

1. Construct the perpendicular bisector of a 3 inch line. Use Investigation 1-4 from Chapter 1 to help you.
2. Construct the angle bisector of an 80° angle (Investigation 1-5).
3. Find the value of \(x \).
4. Find the value of \(x \) and \(y \). Is \(m \) the perpendicular bisector of \(AB \)? How do you know?

Know What? An archeologist has found three bones in Cairo, Egypt. The bones are 4 meters apart, 7 meters apart and 9 meters apart (to form a triangle). The likelihood that more bones are in this area is very high. If these bones are on the edge of the digging circle, where is the center of the circle?
Perpendicular Bisectors

In Chapter 1, you learned that a perpendicular bisector intersects a line segment at its midpoint and is perpendicular. Let’s analyze your construction from #1.

Investigation 5-1: Properties of Perpendicular Bisectors

Tools Needed: #1 from the Review Queue, ruler, pencil

1. Look at your construction (#1 from the Review Queue).
 Draw three points on the perpendicular bisector, two above the line and one below it. Label all the points like the picture on the right.

2. Measure the following distances with a ruler: AD, DB, AC, CB, AE, and EB. Record them on your paper.

 What do you notice about these distances?

 From the investigation, you should notice that $AD = DB$, $AC = CB$, and $AE = EB$. This means that C, D, and E are equidistant from A and B.

 Perpendicular Bisector Theorem: If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

 If $\overrightarrow{CD} \perp \overrightarrow{AB}$ and $AD = DB$, then $AC = CB$.

The proof of the Perpendicular Bisector Theorem is in the exercises for this section. In addition to the Perpendicular Bisector Theorem, the converse is also true.

Perpendicular Bisector Theorem Converse: If a point is equidistant from the endpoints of a segment, then the point is on the perpendicular bisector of the segment.

Using the picture above: If $AC = CB$, then $\overrightarrow{CD} \perp \overrightarrow{AB}$ and $AD = DB$.

Proof of the Perpendicular Bisector Theorem Converse
Given: \(\overline{AC} \cong \overline{CB} \)

Prove: \(\overrightarrow{CD} \) is the perpendicular bisector of \(\overline{AB} \)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\overline{AC} \cong \overline{CB})</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\triangle ACB) is an isosceles triangle</td>
<td>Definition of an isosceles triangle</td>
</tr>
<tr>
<td>3. (\angle A \cong \angle B)</td>
<td>Isosceles Triangle Theorem</td>
</tr>
<tr>
<td>4. Draw point (D), such that (D) is the midpoint of (\overline{AB})</td>
<td>Every line segment has exactly one midpoint</td>
</tr>
<tr>
<td>5. (\overline{AD} \cong \overline{DB})</td>
<td>Definition of a midpoint</td>
</tr>
<tr>
<td>6. (\triangle ACD \cong \triangle BCD)</td>
<td>SAS</td>
</tr>
<tr>
<td>7. (\angle CDA \cong \angle CDB)</td>
<td>CPCTC</td>
</tr>
<tr>
<td>8. (m\angle CDA = m\angle CDB = 90^\circ)</td>
<td>Congruent Supplements Theorem</td>
</tr>
<tr>
<td>9. (\overrightarrow{CD} \perp \overline{AB})</td>
<td>Definition of perpendicular lines</td>
</tr>
<tr>
<td>10. (\overrightarrow{CD}) is the perpendicular bisector of (\overline{AB})</td>
<td>Definition of perpendicular bisector</td>
</tr>
</tbody>
</table>

Example 1: If \(\overrightarrow{MO} \) is the perpendicular bisector of \(\overline{LN} \) and \(LO = 8 \), what is \(ON \)?

Solution: By the Perpendicular Bisector Theorem, \(LO = ON \). So, \(ON = 8 \).

Example 2: *Algebra Connection* Find \(x \) and the length of each segment.

Solution: \(\overrightarrow{WX} \) is the perpendicular bisector of \(\overline{XY} \) and from the Perpendicular Bisector Theorem \(WZ = WY \).

\[
2x + 11 = 4x - 5 \\
16 = 2x \\
8 = x
\]
Example 3: \(\overrightarrow{OQ} \) is the perpendicular bisector of \(MP \).

\[
WZ = WY = 2(8) + 11 = 16 + 11 = 27.
\]

\[\text{Example 3: } \overrightarrow{OQ} \text{ is the perpendicular bisector of } MP.\]

\[\text{Solution:}\]

a) Which line segments are equal?
b) Find \(x \).
c) Is \(L \) on \(\overrightarrow{OQ} \)? How do you know?

\[
\begin{align*}
a) \ ML &= LP, \ MO &= OP, \text{ and } MQ = QP. \\
b) 4x + 3 &= 11 \\
4x &= 8 \\
x &= 2 \\
c) \text{Yes, } L \text{ is on } \overrightarrow{OQ} \text{ because } ML = LP \text{ (the Perpendicular Bisector Theorem Converse).}
\end{align*}
\]

Perpendicular Bisectors and Triangles

Let’s investigate what happens when we construct perpendicular lines for the sides of a triangle.

Investigation 5-2: Constructing the Perpendicular Bisectors of the Sides of a Triangle

Tools Needed: patty paper, pencil, ruler, compass

1. Draw a scalene triangle on your patty paper.

2. Fold one vertex over to meet one of the other vertices. Make sure one side perfectly overlaps itself. Crease and open.
3. Repeat this process for the other two sides. Each crease is the perpendicular bisector of a side. Your paper should look like this:

The creases, or perpendicular bisectors, intersect at the same point.

4. This point has an additional property. Put the pointer of your compass on this point of intersection. Open the compass so that the pencil is on one of the vertices. Draw a circle.

The circle you drew passes through all the vertices of the triangle. We say that this circle circumscribes the triangle or that the triangle is inscribed in the circle.

Angle Bisectors

In Chapter 1, you learned that an angle bisector cuts an angle exactly in half.
5.2. Perpendicular Bisectors and Angle Bisectors in Triangles

Investigation 5-3: Properties of an Angle Bisector

Tools Needed: #2 from your Review Queue, protractor, ruler, pencil

1. Look at #2 from the Review Queue. Label your angle like the one to the right. Place two points, \(D \) and \(E \) on the angle bisector.

2. Recall the patty paper construct of the perpendicular bisector above (Investigation 5-2). Using this idea, fold a perpendicular line to \(\overrightarrow{BC} \) through \(D \). Repeat with \(D \) and \(\overrightarrow{BA} \). Label the intersections \(F \) and \(G \).

3. Measure \(FD \) and \(DG \). What do you notice?

4. Repeat #2 and #3 with point \(E \). Do you have the same conclusion?

For #3, you should find that \(FD = DG \) and the same thing happens with \(E \).

Recall from Chapter 3 that the shortest distance from a point to a line is the perpendicular length between them. \(FD = DG \) and are the shortest lengths from \(D \) to each side of the angle.

Angle Bisector Theorem: If a point is on the bisector of an angle, then the point is equidistant from the sides of the angle.

In other words, if \(\overrightarrow{BD} \) bisects \(\angle ABC \), \(\overrightarrow{BA} \perp \overrightarrow{FD} \), and, \(\overrightarrow{BC} \perp \overrightarrow{DG} \) then \(FD = DG \).

Proof of the Angle Bisector Theorem

Given: \(\overrightarrow{BD} \) bisects \(\angle ABC \), \(\overrightarrow{BA} \perp \overrightarrow{AD} \), and \(\overrightarrow{BC} \perp \overrightarrow{DC} \)

Prove: \(\overrightarrow{AD} \cong \overrightarrow{DC} \)
Table 5.1:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. \overrightarrow{BD} bisects $\angle ABC$, $\overrightarrow{BA} \perp \overrightarrow{AD}$, $\overrightarrow{BC} \perp \overrightarrow{DC}$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\overrightarrow{ABD} \cong \overrightarrow{DBC}$</td>
<td>Definition of an angle bisector</td>
</tr>
<tr>
<td>3. $\angle DAB$ and $\angle DCB$ are right angles</td>
<td>Definition of perpendicular lines</td>
</tr>
<tr>
<td>4. $\overrightarrow{DAB} \cong \overrightarrow{DCB}$</td>
<td>All right angles are congruent</td>
</tr>
<tr>
<td>5. $\overrightarrow{BD} \cong \overrightarrow{BD}$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>6. $\triangle ABD \cong \triangle CBD$</td>
<td>AAS</td>
</tr>
<tr>
<td>7. $\overrightarrow{AD} \cong \overrightarrow{DC}$</td>
<td>CPCTC</td>
</tr>
</tbody>
</table>

The converse of this theorem is also true. The proof is in the review questions.

Angle Bisector Theorem Converse: If a point is in the interior of an angle and equidistant from the sides, then it lies on the bisector of the angle.

Example 4: Is Y on the angle bisector of $\angle XWZ$?

Solution: If Y is on the angle bisector, then $XY = YZ$ and they need to be perpendicular to the sides of the angle. From the markings we know $XY \perp \overrightarrow{WX}$ and $YZ \perp \overrightarrow{WZ}$. Second, $XY = YZ = 6$. So, yes, Y is on the angle bisector of $\angle XWZ$.

Example 5: Algebra Connection \overrightarrow{MO} is the angle bisector of $\angle LMN$. Find the measure of x.

Solution: $LO = ON$ by the Angle Bisector Theorem Converse.

\[4x - 5 = 23\]
\[4x = 28\]
\[x = 7\]

Angle Bisectors in a Triangle

Let’s use patty paper to construct the angle bisector of every angle in a triangle.

Investigation 5-4: Constructing Angle Bisectors in Triangles
Tools Needed: patty paper, ruler, pencil, compass

1. Draw a scalene triangle on your patty paper.

2. Fold the patty paper so that two sides of the triangle perfectly overlap and the fold passes through the vertex between these sides. Crease and open.

3. Repeat Step 2 for the other two angles. Your paper should look like:

The creases, or angle bisectors, intersect at the same point.

4. This point has an additional property. Place the pointer of the compass on this point. Open the compass “straight down” so that the pencil touches one side of the triangle (the pink line in the picture to the right). Draw a circle. Notice that the circle touches all three sides of the triangle. We say that this circle is *inscribed* in the triangle because it touches all three sides.
Know What? Revisited If the bones are the vertices of a triangle, then the center of the circle will be the intersection of the perpendicular bisectors. Use Investigation 5-2 to find the perpendicular bisector of at least two sides.

Review Questions

- Questions 1-3 are similar to Investigation 5-2.
- Questions 4-6 are similar to Investigation 5-4.
- Questions 7-15 are similar to Examples 1-3.
- Questions 16-24 are similar to Examples 4 and 5.
- Question 25-28 are a review of perpendicular lines.
- Questions 29 and 30 are similar to the two proofs in this section.

Construction Find the point of intersection of the perpendicular bisectors by tracing each triangle onto a piece of paper (or patty paper) and using Investigation 5-2.

3. Construct equilateral triangle $\triangle ABC$ (Investigation 4-6). Construct the perpendicular bisectors of the sides of the triangle. Connect the point of intersection to each vertex. Your original triangle is now divided into six triangles. What can you conclude about the six triangles?

Construction Find the point of intersection of the angle bisectors by tracing each triangle onto a piece of paper (or patty paper) and using Investigation 5-4. Construct the inscribed circle.
6. Refer back to #3, if you were to construct the angle bisectors of an equilateral triangle, what do you think would happen? Would the result of #3 be any different?

Algebra Connection For questions 7-12, find the value of x. m is the perpendicular bisector of AB.

7.

8.

9.

10.

11.
13. \(m \) is the perpendicular bisector of \(AB \).

 a. List all the congruent segments.
 b. Is \(C \) on \(AB \)? Why or why not?
 c. Is \(D \) on \(AB \)? Why or why not?

For Questions 14 and 15, determine if \(\overrightarrow{ST} \) is the perpendicular bisector of \(XY \). Explain why or why not.

For questions 6-11, \(\overrightarrow{AB} \) is the angle bisector of \(\angle CAD \). Solve for the missing variable.
Is there enough information to determine if \overrightarrow{AB} is the angle bisector of $\angle CAD$? Why or why not?

For Questions 25-28, consider line segment \overline{AB} with endpoints $A(2, 1)$ and $B(6, 3)$.

25. Find the slope of AB.

26. Find the midpoint of AB.
27. What is the slope of the perpendicular line to AB?
28. Find the equation of the line with the slope from #27 and through the midpoint from #26. This is the perpendicular bisector of AB.
29. Fill in the blanks of the proof of the Perpendicular Bisector Theorem.

![Diagram showing a triangle with a perpendicular bisector]

Table 5.2:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. D is the midpoint of AB</td>
<td>2. Definition of a midpoint</td>
</tr>
<tr>
<td>3. $\angle CDA$ and $\angle CDB$ are right angles</td>
<td>4. Reflexive PoC</td>
</tr>
<tr>
<td>5. $\triangle CDA \cong \triangle CDB$</td>
<td>6. $\triangle CDA \cong \triangle CDB$</td>
</tr>
<tr>
<td>7. $\triangle CDA \cong \triangle CDB$</td>
<td>8. $AC \cong CB$</td>
</tr>
</tbody>
</table>

30. Fill in the blanks in the Angle Bisector Theorem Converse.

![Diagram showing an angle bisector]

Table 5.3:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $AD \cong DC$, such that AD and DC are the shortest distances to BA and BC</td>
<td>2. The shortest distance from a point to a line is perpendicular.</td>
</tr>
<tr>
<td>3. $\angle DAB$ and $\angle DCB$ are right angles</td>
<td>4. $\triangle DAB \cong \triangle DCB$</td>
</tr>
<tr>
<td>5. $BD \cong BD$</td>
<td>6. $\triangle ABD \cong \triangle CBD$</td>
</tr>
<tr>
<td>7. $\triangle ABD \cong \triangle CBD$</td>
<td>8. BD bisects $\angle ABC$</td>
</tr>
<tr>
<td>9. BD bisects $\angle ABC$</td>
<td>CPCTC</td>
</tr>
</tbody>
</table>
Review Queue Answers

1.

2.

3. $2x + 3 = 27$
 (a) $2x = 24$
 $x = 12$
 (b) $5x + 11 = 26$
 $5x = 15$
 $x = 3$

4. $6x - 13 = 2x + 11$ $3y + 21 = 90^\circ$
 $4x = 24$ $3y = 69^\circ$
 $x = 6$ $y = 23^\circ$

Yes, m is the perpendicular bisector of AB because it is perpendicular to AB and passes through the midpoint.
5.3 Medians and Altitudes in Triangles

Learning Objectives

- Define median and find the properties of the centroid.
- Apply medians to the coordinate plane.
- Construct the altitude of a triangle.

Review Queue

1. Find the midpoint between (9, -1) and (1, 15).
2. Find the slope between (9, -1) and (1, 15). Then find the equation of the line.
3. Find the equation of the line that is perpendicular to the line from #2 through (-6, 2).

Know What? Triangles are frequently used in art. Your art teacher assigns an art project involving triangles. You decide to make a series of hanging triangles of all different sizes from one long piece of wire. Where should you hang the triangles from so that they balance horizontally?

Medians

Median: The line segment that joins a vertex and the midpoint of the opposite side (of a triangle).
LO is the median from L to the midpoint of NM.

Example 1: Find the other two medians of \(\triangle L M N \).

Solution: Find the midpoints of sides LN and LM, using a ruler. Be sure to always include the appropriate tick marks for the midpoints.

Centroid: The point of intersection for the medians of a triangle.

Investigation 5-5: Properties of the Centroid

Tools Needed: pencil, paper, ruler, compass

1. Construct a scalene triangle with sides of length 6 cm, 10 cm, and 12 cm (Investigation 4-2). Use the ruler to measure each side and mark the midpoint.

2. Draw in the medians and mark the centroid.

Measure the length of each median. Then, measure the length from each vertex to the centroid and from the centroid to the midpoint. Do you notice anything?

3. Cut out the triangle. Place the centroid on either the tip of the pencil or the pointer of the compass. What happens?
The properties discovered are summarized below.

Median Theorem: The medians of a triangle intersect at a point that is two-thirds of the distance from the vertices to the midpoint of the opposite side. The centroid is the “balancing point” of a triangle.

If G is the centroid, then:

\[
AG = \frac{2}{3} AD, \ CG = \frac{2}{3} CF, \ EG = \frac{2}{3} BE \\
DG = \frac{1}{3} AD, \ FG = \frac{1}{3} CF, \ BG = \frac{1}{3} BE \\
\text{And:} \quad DG = \frac{1}{2} AG, \ FG = \frac{1}{2} CG, \ BG = \frac{1}{2} EG
\]

Example 2: I, K, and M are midpoints of the sides of $\triangle HJL$.

a) If $JM = 18$, find JN and NM.

b) If $HN = 14$, find NK and HK.

Solution:

a) $JN = \frac{2}{3} \cdot 18 = 12$. $NM = JM - JN = 18 - 12$. $NM = 6$.

b) $14 = \frac{2}{3} \cdot HK$

$14 \cdot \frac{3}{2} = HK = 21$. NK is a third of 21, $NK = 7$.

Example 3: *Algebra Connection* H is the centroid of $\triangle ABC$ and $DC = 5y - 16$. Find x and y.

279
5.3. Medians and Altitudes in Triangles

Solution:

\[
\frac{1}{2} BH = HF \quad \rightarrow \quad BH = 2HF
\]

\[
3x + 6 = 2(2x - 1) \\
3x + 6 = 4x - 2 \\
8 = x
\]

\[
HC = \frac{2}{3} DC \quad \rightarrow \quad \frac{3}{2} HC = DC
\]

\[
\frac{3}{2}(2y + 8) = 5y - 16 \\
3y + 12 = 5y - 16 \\
28 = 2y
\]

Altitudes

The last line segment within a triangle is an altitude. It is also called the height of a triangle.

Altitude: A line segment from a vertex and perpendicular to the opposite side. The red lines below are all altitudes.

When a triangle is a right triangle, the altitude, or height, is the leg. If the triangle is obtuse, then the altitude will be outside of the triangle.

Investigation 5-6: Constructing an Altitude for an Obtuse Triangle

Tools Needed: pencil, paper, compass, ruler

1. Draw an obtuse triangle. Label it \(\triangle ABC\), like the picture to the right. Extend side \(\overline{AC}\), beyond point \(A\).

2. Using Investigation 3-2, construct a perpendicular line to \(\overline{AC}\), through \(B\).

The altitude does not have to extend past side \(\overline{AC}\), as it does in the picture. Technically the height is only the vertical distance from the highest vertex to the opposite side.
If you are constructing an altitude for an acute triangle, you may skip Step 1 of this investigation.

Know What? Revisited The point that you should put the wire through is the centroid. That way, each triangle will balance.

Review Questions

- Questions 1-4 use Investigation 5-5.
- Questions 5-6 use Investigation 3-2 and 5-6.
- Questions 7-18 are similar to Examples 2 and 3.
- Questions 19-26 use review to discover something new.
- Questions 27-34 use the definitions of perpendicular bisector, angle bisector, median and altitude.
- Question 35 is similar to the proofs in the previous section.

Construction Construct the centroid for the following triangles by tracing each triangle onto a piece of paper and using Investigation 5-5.

4. Is the centroid always going to be inside of the triangle? Why?

Construction Construct the altitude from the top vertex for the following triangles. Trace each triangle onto a piece of paper and using Investigations 3-2 and 5-6.
For questions 7-11, B, D, and F are the midpoints of each side and G is the centroid. Find the following lengths.

7. If $BG = 5$, find GE and BE
8. If $CG = 16$, find GF and CF
9. If $AD = 30$, find AG and GD
10. If $GF = x$, find GC and CF
11. If $AG = 9x$ and $GD = 5x - 1$, find x and AD.

For questions 12-18, N and M are the midpoints of sides XY and ZY.

12. What is point C?
13. If $XN = 5$, find XY.
14. If $XC = 6$, find XM.
15. If $ZN = 45$, find CN.
16. If $CM = 4$, find XC.
17. If $ZM = y$, find ZY.
18. If $ZN = 6x + 15$ and $ZC = 38$, find x and ZN.

Multistep Problem Find the equation of a median in the $x - y$ plane.

19. Plot $\triangle ABC$: $A(-6, 4)$, $B(-2, 4)$ and $C(6, -4)$
20. Find the midpoint of \overline{AC}. Label it D.
21. Find the slope of \overline{BD}.
22. Find the equation of \overline{BD}.

282
23. Plot $\triangle DEF$: $D(-1, 5), E(0, -1), F(6, 3)$
24. Find the midpoint of EF. Label it G.
25. Find the slope of DG.
26. Find the equation of DG.

Determine if the following statements are true or false.

27. The perpendicular bisector goes through the midpoint of a line segment.
28. The perpendicular bisector goes through a vertex.
29. The angle bisector passes through the midpoint.
30. The median bisects the side it intersects.
31. The angle bisectors intersect at one point.
32. The altitude of an obtuse triangle is inside a triangle.
33. The centroid is the balancing point of a triangle.
34. A median and a perpendicular bisector intersect at the midpoint of the side they intersect.

Fill in the blanks in the proof below.

35. Given: Isosceles $\triangle ABC$ with legs \overline{AB} and \overline{AC} $\overline{BD} \perp \overline{DC}$ and $\overline{CE} \perp \overline{BE}$ Prove: $\overline{BD} \cong \overline{CE}$

![Diagram of isosceles triangle with perpendiculars marked]

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Isosceles $\triangle ABC$ with legs \overline{AB} and \overline{AC} $\overline{BD} \perp \overline{DC}$ and $\overline{CE} \perp \overline{BE}$</td>
<td></td>
</tr>
<tr>
<td>2. $\angle DBC \cong \angle ECB$</td>
<td>Definition of perpendicular lines</td>
</tr>
<tr>
<td>3. $\angle BEC \cong \angle CEB$</td>
<td></td>
</tr>
<tr>
<td>4. $\overline{BD} \cong \overline{CE}$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>5. $\triangle BEC \cong \triangle CDB$</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.4:

Review Queue Answers

1. midpoint = $\left(\frac{9+1}{2}, \frac{-1+15}{2}\right) = (5, 7)$
2. $m = \frac{15+1}{1-9} = \frac{16}{-8} = -2$ $15 = -2(1) + b$ $17 = b$
3. $y = \frac{1}{2}x + b$
 $2 = \frac{1}{2}(-6) + b$
 $2 = -3 + b$
\[5 = b \]
\[y = \frac{1}{2}x + 5 \]
Learning Objectives

- Determine relationships among the angles and sides of a triangle.
- Understand the Triangle Inequality Theorem.
- Understand the SAS Inequality Theorem and its converse.

Review Queue

Solve the following inequalities.

1. $4x - 9 \leq 19$
2. $-5 > -2x + 13$
3. $\frac{2}{3}x + 1 \geq 13$
4. $-7 < 3x - 1 < 14$

Know What? Two planes take off from LAX. Their flight patterns are to the right. Both planes travel 200 miles, but which one is further away from LAX?

Comparing Angles and Sides

Look at the triangle to the right. The sides of the triangle are given. Can you determine which angle is the largest? The largest angle will be opposite 18 because it is the longest side. Similarly, the smallest angle will be opposite 7, which is the shortest side.
5.4. Inequalities in Triangles

Theorem 5-9: If one side of a triangle is longer than another side, then the angle opposite the longer side will be larger than the angle opposite the shorter side.

Converse of Theorem 5-9: If one angle in a triangle is larger than another angle in a triangle, then the side opposite the larger angle will be longer than the side opposite the smaller angle.

To prove these theorems, we will do so indirectly. This will be done in the extension at the end of this chapter.

Example 1: List the sides in order, from shortest to longest.

![Triangle with angles 86°, 27°, and 67°]

Solution: First, find \(m \angle A \). From the Triangle Sum Theorem:

\[
m \angle A + 86^\circ + 27^\circ = 180^\circ
\]

\[
m \angle A = 67^\circ
\]

86° is the largest angle, so \(AC \) is the longest side. The next angle is 67°, so \(BC \) would be the next longest side. 27° is the smallest angle, so \(AB \) is the shortest side. In order, the answer is: \(AB, BC, AC \).

Example 2: List the angles in order, from largest to smallest.

![Triangle with sides 4, 5, and 6]

Solution: Just like with the sides, the largest angle is opposite the longest side. The longest side is \(BC \), so the largest angle is \(\angle A \). Next would be \(\angle B \) and then \(\angle A \).

Triangle Inequality Theorem

Can any three lengths make a triangle? The answer is no. For example, the lengths 1, 2, 3 cannot make a triangle because \(1 + 2 = 3 \), so they would all lie on the same line. The lengths 4, 5, 10 also cannot make a triangle because \(4 + 5 = 9 \).
The arc marks show that the two sides would never meet to form a triangle.

![Triangle Inequality Theorem Diagram]

Triangle Inequality Theorem: Two sides must add up to be greater than the third side.

Example 3: Do the lengths below make a triangle?

a) 4.1, 3.5, 7.5

b) 4, 4, 8

c) 6, 7, 8

Solution: Even though the Triangle Inequality Theorem says “the sum of the length of any two sides,” add up the two shorter sides. They must be greater than the third.

a) $4.1 + 3.5 > 7.5$ Yes, $7.6 > 7.5$

b) $4 + 4 = 8$ No, not a triangle. Two lengths cannot equal the third.

c) $6 + 7 > 8$ Yes, $13 > 8$

Example 4: Find the length of the third side of a triangle if the other two sides are 10 and 6.

Solution: The Triangle Inequality Theorem can also help you find the range of the third side. The two given sides are 6 and 10. The third side, s, must be between $10 - 6 = 4$ and $10 + 6 = 16$. In other words, the range of values for s is $4 < s < 16$.

![Range of Third Side Diagram]

Notice the range is no less than 4, and not equal to 4. The third side could be 4.1 because $4.1 + 6 > 10$. For the same reason, s cannot be greater than 16, but it could 15.9, $10 + 6 > 15.9$.

If two sides are lengths a and b, then the third side, s, has the range $a - b < s < a + b$.

The SAS Inequality Theorem

The SAS Theorem compares two triangles. If we have two congruent triangles $\triangle ABC$ and $\triangle DEF$, marked below:

![SAS Inequality Theorem Diagram]

Therefore, if $AB = DE$ and $BC = EF$ and $m\angle B > m\angle E$, then $AC > DF$.

Now, let’s make $m\angle B > m\angle E$. Would that make $AC > DF$? Yes.
The **SAS Inequality Theorem**: If two sides of a triangle are congruent to two sides of another triangle, but the included angle of one triangle has greater measure than the included angle of the other triangle, then the third side of the first triangle is longer than the third side of the second triangle.

If $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$ and $m\angle B > m\angle E$, then $\overline{AC} > \overline{DF}$.

Example 5: List the sides in order, from least to greatest.

Solution: Let’s start with $\triangle DCE$. The missing angle is 55°. By Theorem 5-9, the sides, in order are \overline{CE}, \overline{CD}, and \overline{DE}.

For $\triangle BCD$, the missing angle is 43°. Again, by Theorem 5-9, the order of the sides is \overline{BD}, \overline{CD}, and \overline{BC}.

By the SAS Inequality Theorem, we know that $\overline{BC} > \overline{DE}$, so the order of all the sides would be: $\overline{BD} = \overline{CE}$, \overline{CD}, \overline{DE}, \overline{BC}.

SSS Inequality Theorem

SSS Inequality Theorem: If two sides of a triangle are congruent to two sides of another triangle, but the third side of the first triangle is longer than the third side of the second triangle, then the included angle of the first triangle is greater in measure than the included angle of the second triangle.

If $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$ and $\overline{AC} > \overline{DF}$, then $m\angle B > m\angle E$.

288
Example 6: If \overline{XM} is a median of $\triangle XYZ$ and $XY > XZ$, what can we say about $m_{\angle 1}$ and $m_{\angle 2}$?

Solution: M is the midpoint of YZ, so $YM = MZ, MX = MX$ by the Reflexive Property and we know $XY > XZ$.

We can use the SSS Inequality Theorem to say $m_{\angle 1} > m_{\angle 2}$.

Example 7: List the sides of the two triangles in order, from least to greatest.

Solution: There are no congruent sides or angles. Look at each triangle separately.

$\triangle XYZ$: The missing angle is 42°. By Theorem 5-9, the order of the sides is $YZ, XY,$ and XZ.

$\triangle WZX$: The missing angle is 55°. The order is $XZ, WZ,$ and WX.

Because the longest side in $\triangle XYZ$ is the shortest side in $\triangle WZX$, we can put all the sides together in one list: YZ, XY, XZ, WZ, WX.

Example 8: Below is isosceles triangle $\triangle ABC$. List everything you can about the triangle and why.

Solution:

$AB = BC$ because it is given.

$m_\angle A = m_\angle C$ by the Base Angle Theorem.

$AD < DC$ because $m_\angle ABD < m_\angle CBD$ and the SAS Triangle Inequality Theorem.

Know What? Revisited The blue plane is further away from LAX because $110^\circ < 130^\circ$. (SAS Inequality Theorem)

Review Questions

• Questions 1-9 are similar to Examples 1 and 2.
• Questions 10-18 are similar to Example 3.
• Questions 19-26 are similar to Example 4.
• Questions 27 and 28 are similar to Examples 5 and 6.
• Question 29 is similar to Example 7.
• Question 30 is similar to Example 8.

For questions 1-3, list the sides in order from shortest to longest.

For questions 4-6, list the angles from largest to smallest.

7. Draw a triangle with sides 3 cm, 4 cm, and 5 cm. The angle measures are 90°, 53°, and 37°. Place the angle measures in the appropriate spots.

8. Draw a triangle with angle measures 56°, 54° and the included side is 8 cm. What is the longest side of this triangle?

9. Draw a triangle with sides 6 cm, 7 cm, and 8 cm. The angle measures are 75.5°, 58°, and 46.5°. Place the angle measures in the appropriate spots.

Determine if the sets of lengths below can make a triangle. If not, state why.
10. 6, 6, 13
11. 1, 2, 3
12. 7, 8, 10
13. 5, 4, 3
14. 23, 56, 85
15. 30, 40, 50
16. 7, 8, 14
17. 7, 8, 15
18. 7, 8, 14.99

If two lengths of the sides of a triangle are given, determine the range of the length of the third side.

19. 8 and 9
20. 4 and 15
21. 20 and 32
22. 2 and 5
23. 10 and 8
24. \(x\) and \(2x\)
25. The base of an isosceles triangle has length 24. What can you say about the length of each leg?
26. The legs of an isosceles triangle have a length of 12 each. What can you say about the length of the base?
27. What conclusions can you draw about \(x\)?

28. Compare \(\angle 1\) and \(\angle 2\).

29. List the sides from shortest to longest.

30. Compare \(\angle 1\) and \(\angle 2\). What can you say about \(\angle 3\) and \(\angle 4\)?
Review Queue Answers

1. \(4x - 9 \leq 19\)
 \[4x \leq 28\]
 \[x \leq 7\]

2. \(-5 > -2x + 13\)
 \[-18 > -2x\]
 \[9 < x\]

3. \[\frac{2}{3}x + 1 \geq 13\]
 \[\frac{2}{3}x \geq 12\]
 \[x \geq 18\]

4. \(-7 < 3x - 1 < 14\)
 \[-6 < 3x < 15\]
 \[-2 < x < 5\]
The indirect proof or proof by contradiction is part of 41 out of 50 states’ mathematics standards. Depending on the state, the teacher may choose to use none, part or all of this section.

Learning Objectives

• Reason indirectly to develop proofs.

Until now, we have proved theorems true by direct reasoning, where conclusions are drawn from a series of facts and previously proven theorems. Indirect proof is another option.

Indirect Proof: When the conclusion from a hypothesis is assumed false (or opposite of what it states) and then a contradiction is reached from the given or deduced statements.

The easiest way to understand indirect proofs is by example.

Indirect Proofs in Algebra

Example 1: If \(x = 2 \), then \(3x - 5 \neq 10 \). Prove this statement is true by contradiction.

Solution: In an indirect proof the first thing you do is assume the conclusion of the statement is **false**. In this case, we will assume the **opposite** of \(3x - 5 \neq 10 \)

If \(x = 2 \), then \(3x - 5 = 10 \)

Take this statement as true and solve for \(x \).

\[
3x - 5 = 10 \\
3x = 15 \\
x = 5
\]

\(x = 5 \) **contradicts** the given statement that \(x = 2 \). Hence, our **assumption is incorrect** and \(3x - 5 \neq 10 \) is **true**.

Example 2: If \(n \) is an integer and \(n^2 \) is odd, then \(n \) is odd. Prove this is true indirectly.

Solution: First, assume the **opposite** of “\(n \) is odd.”

\(n \) is **even**.

Now, square \(n \) and see what happens.

If \(n \) is even, then \(n = 2a \), where \(a \) is any integer.

\[
n^2 = (2a)^2 = 4a^2
\]

This means that \(n^2 \) is a multiple of 4. No odd number can be divided evenly by an even number, so this **contradicts our assumption** that \(n \) is even. Therefore, \(n \) must be odd if \(n^2 \) is odd.
Indirect Proofs in Geometry

Example 3: If \(\triangle ABC \) is isosceles, then the measure of the base angles cannot be 92°. Prove this indirectly.

Solution: Assume the opposite of the conclusion.

The measure of the base angles are 92°.

If the base angles are 92°, then they add up to 184°. This contradicts the Triangle Sum Theorem that says all triangles add up to 180°. Therefore, the base angles cannot be 92°.

Example 4: Prove the SSS Inequality Theorem is true by contradiction.

Solution: The SSS Inequality Theorem says: “If two sides of a triangle are congruent to two sides of another triangle, but the third side of the first triangle is longer than the third side of the second triangle, then the included angle of the first triangle is greater in measure than the included angle of the second triangle.” First, assume the opposite of the conclusion.

The included angle of the first triangle is less than or equal to the included angle of the second triangle.

If the included angles are equal then the two triangles would be congruent by SAS and the third sides would be congruent by CPCTC. This contradicts the hypothesis of the original statement “the third side of the first triangle is longer than the third side of the second.” Therefore, the included angle of the first triangle must be larger than the included angle of the second.

To summarize:

- Assume the opposite of the conclusion (second half) of the statement.
- Proceed as if this assumption is true to find the contradiction.
- Once there is a contradiction, the original statement is true.
- DO NOT use specific examples. Use variables so that the contradiction can be generalized.

Review Questions

Prove the following statements true indirectly.

1. If \(n \) is an integer and \(n^2 \) is even, then \(n \) is even.
2. If \(m \angle A \neq m \angle B \) in \(\triangle ABC \), then \(\triangle ABC \) is not equilateral.
3. If \(x > 3 \), then \(x^2 > 9 \).
4. The base angles of an isosceles triangle are congruent.
5. If \(x \) is even and \(y \) is odd, then \(x + y \) is odd.
6. In \(\triangle ABE \), if \(\angle A \) is a right angle, then \(\angle B \) cannot be obtuse.
7. If \(A, B, \) and \(C \) are collinear, then \(AB + BC = AC \) (Segment Addition Postulate).
8. Challenge Prove the SAS Inequality Theorem is true using indirect proofs.
5.6 Chapter 5 Review

Keywords, Theorems and Postulates

Midsegments in Triangles

- Midsegment
- Midsegment Theorem

Perpendicular Bisectors and Angle Bisectors in Triangles

- Perpendicular Bisector Theorem
- Perpendicular Bisector Theorem Converse
- Inscribe
- Circumscribe
- Angle Bisector Theorem
- Angle Bisector Theorem Converse

Medians and Altitudes in Triangles

- Median
- Centroid
- Median Theorem
- Altitude

Inequalities in Triangles

- Theorem 5-9
- Converse of Theorem 5-9
- Triangle Inequality Theorem
- SAS Inequality Theorem
- SSS Inequality Theorem

Extension: Indirect Proof

Review

If \(C \) and \(E \) are the midpoints of the sides they lie on, find:
1. The perpendicular bisector of FD.
2. The median of FD.
3. The angle bisector of $\angle FAD$.
4. A midsegment.
5. An altitude.
6. A triangle has sides with length $x + 6$ and $2x - 1$. Find the range of the third side.

Fill in the blanks.

7. A midsegment connects the ________ of two sides of a triangle.
8. The height of a triangle is also called the ________.
9. The point of intersection for all the medians of a triangle is the ________.
10. The longest side is opposite the ________ angle in a triangle.
11. A point on the ________ bisector is ________ to the endpoints.
12. A point on the ________ bisector is ________ to the sides.
13. A circle is ________ when it touches all the sides of a triangle.
14. An ________ proof is also called a proof by contradiction.
15. For $\triangle ABC$ and $\triangle DEF$: $AB = DE$, $BC = EF$, and $m\angle B > m\angle E$, then ________.

Texas Instruments Resources

In the CK-12 Texas Instruments Geometry FlexBook® resource, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9690.
Keywords: Define, write theorems, and/or draw a diagram for each word below.

1st Section: Midsegments
Midsegment
Midsegment Theorem

Homework:

2nd Section: Perpendicular Bisectors and Angle Bisectors in Triangles
Perpendicular Bisector Theorem
Perpendicular Bisector Theorem Converse

Inscribe (use the triangle)
Circumscribe (use the triangle)
Angle Bisector Theorem
Angle Bisector Theorem Converse
3"rd Section: Medians and Altitudes in Triangles

Median
Centroid
Median Theorem
Altitude

4"th Section: Inequalities in Triangles

Theorem 5-9
Converse of Theorem 5-9
Triangle Inequality Theorem
SAS Inequality Theorem
SSS Inequality Theorem
Homework:
Extension: Indirect Proof
Homework:
This chapter starts with the properties of polygons and narrows to focus on quadrilaterals. We will study several different types of quadrilaterals: parallelograms, rhombi, rectangles, squares, kites, and trapezoids. Then, we will prove that different types of quadrilaterals are parallelograms.
6.1 Angles in Polygons

Learning Objectives

- Extend the concept of interior and exterior angles from triangles to convex polygons.
- Find the sums of interior angles in convex polygons.

Review Queue

1. a. What do the angles in a triangle add up to?
 b. Find the measure of x and y.

 ![Diagram of a triangle with angles labeled](image)

 c. A linear pair adds up to _____.

2. a. Find $w^\circ, x^\circ, y^\circ$, and z°.
 b. What is $w^\circ + y^\circ + z^\circ$?

 ![Diagram of a triangle with additional angles](image)

Know What? In nature, geometry is all around us. For example, sea stars have geometric symmetry. The common sea star, top, has five arms, but some species have over 20! To the right are two different kinds of sea stars. Name the polygon that is created by joining their arms and determine if either polygon is regular.
6.1. Angles in Polygons

Interior Angles in Convex Polygons

In Chapter 4, you learned that interior angles are the angles inside a triangle and that these angles add up to 180°. This concept will now be extended to any polygon. As you can see in the images below, a polygon has the same number of interior angles as it does sides. But, what do the angles add up to?

Investigation 6-1: Polygon Sum Formula

Tools Needed: paper, pencil, ruler, colored pencils (optional)

1. Draw a quadrilateral, pentagon, and hexagon.

2. Cut each polygon into triangles by drawing all the diagonals from one vertex. Count the number of triangles.
Make sure none of the triangles overlap.

3. Make a table with the information below.

<table>
<thead>
<tr>
<th>Name of Polygon</th>
<th>Number of Sides</th>
<th>Number of \triangles from one vertex</th>
<th>$(\text{Column 3}) \times (^\circ \text{ in a } \triangle)$</th>
<th>Total Number of Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrilateral</td>
<td>4</td>
<td>2</td>
<td>$2 \times 180^\circ$</td>
<td>360°</td>
</tr>
<tr>
<td>Pentagon</td>
<td>5</td>
<td>3</td>
<td>$3 \times 180^\circ$</td>
<td>540°</td>
</tr>
<tr>
<td>Hexagon</td>
<td>6</td>
<td>4</td>
<td>$4 \times 180^\circ$</td>
<td>720°</td>
</tr>
</tbody>
</table>

4. Notice that the total number of degrees goes up by 180°. So, if the number sides is n, then the number of triangles from one vertex is $n - 2$. Therefore, the formula would be $(n - 2) \times 180^\circ$.

Polygon Sum Formula: For any n-gon, the interior angles add up to $(n - 2) \times 180^\circ$.

![Polygon](image)

$\rightarrow n = 8$

$(8 - 2) \times 180^\circ$

$6 \times 180^\circ$

1080°

Example 1: The interior angles of a polygon add up to 1980°. How many sides does it have?

Solution: Use the Polygon Sum Formula and solve for n.

$$(n - 2) \times 180^\circ = 1980^\circ$$

$180^\circ n - 360^\circ = 1980^\circ$

$180^\circ n = 2340^\circ$

$$n = 13$$

The polygon has 13 sides.

Example 2: How many degrees does each angle in an equiangular nonagon have?

Solution: First we need to find the sum of the interior angles, set $n = 9$.

$$(9 - 2) \times 180^\circ = 7 \times 180^\circ = 1260^\circ$$

“Equiangular” tells us every angle is equal. So, each angle is $\frac{1260^\circ}{9} = 140^\circ$.

Equiangular Polygon Formula: For any equiangular n-gon, the measure of each angle is $\frac{(n - 2) \times 180^\circ}{n}$.
6.1. Angles in Polygons

If \(m \angle 1 = m \angle 2 = m \angle 3 = m \angle 4 = m \angle 5 = m \angle 6 = m \angle 7 = m \angle 8 \), then each angle is \(\frac{(8-2) \times 180^\circ}{8} = \frac{6 \times 180^\circ}{8} = \frac{1080^\circ}{8} = 135^\circ \)

In the Equiangular Polygon Formula, the word *equiangular* can be switched with *regular*.

Regular Polygon: When a polygon is *equilateral* and *equiangular*.

Example 3: An interior angle in a regular polygon is 135°. How many sides does this polygon have?

Solution: Here, we will set the Equiangular Polygon Formula equal to 135° and solve for \(n \).

\[
\frac{(n-2) \times 180^\circ}{n} = 135^\circ \\
180^\circ n - 360^\circ = 135^\circ n \\
-360^\circ = -45^\circ n \\
\frac{-360^\circ}{-45^\circ} = n = 8 \\
\text{The polygon is an octagon.}
\]

Example 4: *Algebra Connection* Find the measure of \(x \).

Solution: From our investigation, we found that a quadrilateral has 360°. Write an equation and solve for \(x \).

\[
89^\circ + (5x - 8)^\circ + (3x + 4)^\circ + 51^\circ = 360^\circ \\
8x = 224^\circ \\
x = 28^\circ
\]
Exterior Angles in Convex Polygons

An exterior angle is an angle that is formed by extending a side of the polygon (Chapter 4).

As you can see, there are two sets of exterior angles for any vertex on a polygon, one going around clockwise (1st hexagon), and the other going around counter-clockwise (2nd hexagon). The angles with the same colors are vertical and congruent.

The Exterior Angle Sum Theorem said the exterior angles of a triangle add up to 360°. Let’s extend this theorem to all polygons.

Investigation 6-2: Exterior Angle Tear-Up

Tools Needed: pencil, paper, colored pencils, scissors

1. Draw a hexagon like the ones above. Color in the exterior angles.
2. Cut out each exterior angle.
3. Fit the six angles together by putting their vertices together. What happens?

The angles all fit around a point, meaning that the angles add up to 360°, just like a triangle.

Exterior Angle Sum Theorem: The sum of the exterior angles of any polygon is 360°.

Example 5: What is \(y \)?
Solution: \(y\) is an exterior angle and all the given angles add up to 360°. Set up an equation.

\[
70° + 60° + 65° + 40° + y = 360°
\]
\[
y = 125°
\]

Example 6: What is the measure of each exterior angle of a regular heptagon?

Solution: Because the polygon is regular, the interior angles are equal. It also means the exterior angles are equal.

\[
\frac{360°}{7} \approx 51.43°
\]

Know What? Revisited The stars make a pentagon and an octagon. The pentagon looks to be regular, but we cannot tell without angle measurements or lengths.

Review Questions

- Questions 1-13 are similar to Examples 1-3 and 6.
- Questions 14-30 are similar to Examples 4 and 5.

1. Fill in the table.

<table>
<thead>
<tr>
<th># of sides</th>
<th># of (\triangle)s from one vertex</th>
<th>(\triangle \times 180°) (sum)</th>
<th>Each angle in a regular (n)-gon</th>
<th>Sum of the exterior angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>180°</td>
<td>60°</td>
<td>60°</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>360°</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>540°</td>
<td>108°</td>
<td>120°</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>720°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **Writing** Do you think the interior angles of a regular \(n \)-gon could ever be 180°? Why or why not? What about 179°?

3. What is the sum of the angles in a 15-gon?

4. What is the sum of the angles in a 23-gon?

5. The sum of the interior angles of a polygon is 4320°. How many sides does the polygon have?

6. The sum of the interior angles of a polygon is 3240°. How many sides does the polygon have?

7. What is the measure of each angle in a regular 16-gon?

8. What is the measure of each angle in an equiangular 24-gon?

9. Each interior angle in a regular polygon is 156°. How many sides does it have?

10. Each interior angle in an equiangular polygon is 90°. How many sides does it have?

11. What is the measure of each exterior angle of a dodecagon?

12. What is the measure of each exterior angle of a 36-gon?

13. What is the sum of the exterior angles of a 27-gon?
Algebra Connection For questions 14-26, find the measure of the missing variable(s).

14.

15.

16.

17.

18.

19.

20.
21. \((x + 11)^\circ \)

22. \((2x + 6)^\circ \)

23. \(x^\circ \)

24. \(145^\circ \)

25. \(67^\circ, 75^\circ \)

26. \(80^\circ, 150^\circ, 105^\circ, 57^\circ, z^\circ \)
28. The interior angles of a pentagon are $x^\circ, x^\circ, 2x^\circ, 2x^\circ$, and $2x^\circ$. What is x?

29. The exterior angles of a quadrilateral are $x^\circ, 2x^\circ, 3x^\circ$, and $4x^\circ$. What is x?

30. The interior angles of a hexagon are $x^\circ, (x + 1)^\circ, (x + 2)^\circ, (x + 3)^\circ, (x + 4)^\circ$, and $(x + 5)^\circ$. What is x?

Review Queue Answers

1.
 a. 180°
 b. $72^\circ + (7x + 3)^\circ + (3x + 5)^\circ = 180^\circ$

 $10x + 80^\circ = 180^\circ$

 $10x = 100^\circ$

 $x = 10^\circ$

 c. 180°

2.
 a. $w = 108^\circ, x = 49^\circ, y = 131^\circ, z = 121^\circ$
 b. 360°
6.2 Properties of Parallelograms

Learning Objectives

- Define a parallelogram.
- Understand the properties of a parallelogram
- Apply theorems about a parallelogram’s sides, angles and diagonals.

Review Queue

1. Draw a quadrilateral with one set of parallel sides.
2. Draw a quadrilateral with two sets of parallel sides.
3. Find the measure of the missing angles in the quadrilaterals below.

Know What? A college has a parallelogram-shaped courtyard between two buildings. The school wants to build two walkways on the diagonals of the parallelogram and a fountain where they intersect. The walkways are going to be 50 feet and 68 feet long. Where would the fountain be?

What is a Parallelogram?

Parallelogram: A quadrilateral with two pairs of parallel sides.
Notice that each pair of sides is marked parallel. Also, recall that two lines are parallel when they are perpendicular to the same line. Parallelograms have a lot of interesting properties.

Investigation 6-2: Properties of Parallelograms

To investigate the properties of a parallelogram, you will need:

- Paper
- Pencil
- Ruler
- Protractor

1. Draw a set of parallel lines by drawing a 3 inch line on either side of your ruler.

2. Rotate the ruler and repeat so you have a parallelogram. If you have colored pencils, outline the parallelogram in another color.

3. Measure the four interior angles of the parallelogram as well as the length of each side. What do you notice?

4. Draw the diagonals. Measure each and then measure the lengths from the point of intersection to each vertex.

To continue to explore the properties of a parallelogram, see the website: http://www.mathwarehouse.com/geometry/quadrilaterals/parallelograms/interactive-parallelogram.php

Opposite Sides Theorem: If a quadrilateral is a parallelogram, then the opposite sides are congruent.

If

then
Opposite Angles Theorem: If a quadrilateral is a parallelogram, then the opposite angles are congruent.

If

\[
\angle A + \angle D = 180^\circ \\
\angle A + \angle B = 180^\circ \\
\angle B + \angle C = 180^\circ \\
\angle C + \angle D = 180^\circ
\]

Consecutive Angles Theorem: If a quadrilateral is a parallelogram, then the consecutive angles are supplementary.

If

then

Parallelogram Diagonals Theorem: If a quadrilateral is a parallelogram, then the diagonals bisect each other.

If
Proof of Opposite Sides Theorem

Given: \(ABCD\) is a parallelogram with diagonal \(BD\)
Prove: \(AB \cong DC, AD \cong BC\)

<table>
<thead>
<tr>
<th>Table 6.3:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
</tr>
<tr>
<td>1. (ABCD) is a parallelogram with diagonal (BD)</td>
</tr>
<tr>
<td>2. (AB \parallel DC, AD \parallel BC)</td>
</tr>
<tr>
<td>3. (\angle ABD \cong \angle BDC, \angle ADB \cong \angle DBC)</td>
</tr>
<tr>
<td>4. (DB \cong DB)</td>
</tr>
<tr>
<td>5. (\triangle ABD \cong \triangle CDB)</td>
</tr>
<tr>
<td>6. (AB \cong DC, AD \cong BC)</td>
</tr>
</tbody>
</table>

The proof of the Opposite Angles Theorem is almost identical. For the last step, the angles are congruent by CPCTC.

Example 1: \(ABCD\) is a parallelogram. If \(m\angle A = 56^\circ\), find the measure of the other angles.

Solution: Draw a picture. When labeling the vertices, the letters are listed, in order, clockwise.

If \(m\angle A = 56^\circ\), then \(m\angle C = 56^\circ\) by the Opposite Angles Theorem.
6.2. Properties of Parallelograms

\[
m_\angle A + m_\angle B = 180^\circ \quad \text{by the Consecutive Angles Theorem.}
\]
\[
56^\circ + m_\angle B = 180^\circ
\]
\[
m_\angle B = 124^\circ \quad m_\angle D = 124^\circ \quad \text{because it is opposite angles with } \angle B.
\]

Example 2: Algebra Connection Find the values of \(x\) and \(y\).

\[
\begin{align*}
6x - 7 &= 2x + 9 \\
4x &= 16 \\
x &= 4
\end{align*}
\]
\[
\begin{align*}
y + 3 &= 12 \\
y &= 9
\end{align*}
\]

Diagonals in a Parallelogram

From the Parallelogram Diagonals Theorem, we know that the diagonals of a parallelogram bisect each other.

Example 3: Show that the diagonals of \(FGHJ\) bisect each other.

Solution: Find the midpoint of each diagonal.
Midpoint of FH: \[\left(\frac{-4+6}{2}, \frac{5-4}{2} \right) = (1, 0.5) \]

Midpoint of GJ: \[\left(\frac{3-1}{2}, \frac{3-2}{2} \right) = (1, 0.5) \]

Because they are the same point, the diagonals intersect at each other’s midpoint. This means they bisect each other.

This is one way to show a quadrilateral is a parallelogram.

Example 4: Algebra Connection $SAND$ is a parallelogram and $SY = 4x - 11$ and $YN = x + 10$. Solve for x.

![Diagram of parallelogram SAND with points S, Y, A, D, and N]

Solution:

\[
SY = YN \\
4x - 11 = x + 10 \\
3x = 21 \\
x = 7
\]

Know What? Revisited The diagonals bisect each other, so the fountain is going to be 34 feet from either endpoint on the 68 foot diagonal and 25 feet from either endpoint on the 50 foot diagonal.

Review Questions

- Questions 1-6 are similar to Examples 2 and 4.
- Questions 7-10 are similar to Example 1.
- Questions 11-23 are similar to Examples 2 and 4.
- Questions 24-27 are similar to Example 3.
- Questions 28 and 29 are similar to the proof of the Opposite Sides Theorem.
- Question 30 is a challenge. Use the properties of parallelograms.

$ABCD$ is a parallelogram. Fill in the blanks below.
6.2. Properties of Parallelograms

1. If \(AB = 6 \), then \(CD = \) ______.
2. If \(AE = 4 \), then \(AC = \) ______.
3. If \(m\angle ADC = 80^\circ \), \(m\angle DAB = \) ______.
4. If \(m\angle BAC = 45^\circ \), \(m\angle ACD = \) ______.
5. If \(m\angle CBD = 62^\circ \), \(m\angle ADB = \) ______.
6. If \(DB = 16 \), then \(DE = \) ______.
7. If \(m\angle B = 72^\circ \) in parallelogram \(ABCD \), find the other three angles.
8. If \(m\angle S = 143^\circ \) in parallelogram \(PQRS \), find the other three angles.
9. If \(AB \perp BC \) in parallelogram \(ABCD \), find the measure of all four angles.
10. If \(m\angle F = x^\circ \) in parallelogram \(EFGH \), find the other three angles.

For questions 11-19, find the measures of the variable(s). All the figures below are parallelograms.
Use the parallelogram $WAVE$ to find:

20. $m\angle AWE$
21. $m\angle ESV$
22. $m\angle WEA$
23. $m\angle AVW$

Find the point of intersection of the diagonals to see if $EFGH$ is a parallelogram.

24. $E(-1, 3), F(3, 4), G(5, -1), H(1, -2)$
25. $E(3, -2), F(7, 0), G(9, -4), H(5, -4)$
26. $E(-6, 3), F(2, 5), G(6, -3), H(-4, -5)$
27. $E(-2, -2), F(-4, -6), G(-6, -4), H(-4, 0)$

Fill in the blanks in the proofs below.

28. **Opposite Angles Theorem**
Given: $ABCD$ is a parallelogram with diagonal BD
Prove: $\angle A \cong \angle C$

Table 6.4:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $AB \parallel DC, AD \parallel BC$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\triangle ABD \cong \triangle CDB$</td>
<td>Alternate Interior Angles Theorem</td>
</tr>
<tr>
<td>3. $\angle A \cong \angle C$</td>
<td>Reflexive PoC</td>
</tr>
</tbody>
</table>

29. Parallelogram Diagonals Theorem

![Diagram of parallelogram with diagonals]

Given: $ABCD$ is a parallelogram with diagonals BD and AC
Prove: $AE \cong EC, DE \cong EB$

Table 6.5:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $AB \cong DC$</td>
<td>Definition of a parallelogram</td>
</tr>
<tr>
<td>2. $\angle A \cong \angle C$</td>
<td>Alternate Interior Angles Theorem</td>
</tr>
<tr>
<td>3. $AE \cong EC, DE \cong EB$</td>
<td></td>
</tr>
</tbody>
</table>

30. Challenge Find x, y°, and z°. (The two quadrilaterals with the same side are parallelograms.)

![Diagram of parallelogram with angles]
Review Queue Answers

3. \(3x + x + 3x + x = 360^\circ\)
 \[8x = 360^\circ\]
 \[x = 45^\circ\]

4. \(4x + 2 = 90^\circ\)
 \[4x = 88^\circ\]
 \[x = 22^\circ\]
6.3 Proving Quadrilaterals are Parallelograms

Learning Objectives

• Prove a quadrilateral is a parallelogram.
• Show a quadrilateral is a parallelogram in the $x - y$ plane.

Review Queue

1. Plot the points $A(2, 2), B(4, -2), C(-2, -4),$ and $D(-6, -2)$.
 a. Find the slopes of $AB, BC, CD,$ and AD. Is $ABCD$ a parallelogram?
 b. Find the point of intersection of the diagonals by finding the midpoint of each.

Know What? You are marking out a baseball diamond and standing at home plate. 3^{rd} base is 90 feet away, 2^{nd} base is 127.3 feet away, and 1^{st} base is also 90 feet away. The angle at home plate is 90°, from 1^{st} to 3^{rd} is 90°. Find the length of the other diagonal (using the Pythagorean Theorem) and determine if the baseball diamond is a parallelogram.

Determining if a Quadrilateral is a Parallelogram

The converses of the theorems in the last section will now be used to see if a quadrilateral is a parallelogram.

Opposite Sides Theorem Converse: If the opposite sides of a quadrilateral are congruent, then the figure is a parallelogram.

If
then

Opposite Angles Theorem Converse: If the opposite angles of a quadrilateral are congruent, then the figure is a parallelogram.

If

then

Parallelogram Diagonals Theorem Converse: If the diagonals of a quadrilateral bisect each other, then the figure is a parallelogram.

If

then

Proof of the Opposite Sides Theorem Converse

Given: $\overline{AB} \cong \overline{DC}, \overline{AD} \cong \overline{BC}$

Prove: $ABCD$ is a parallelogram
6.3. Proving Quadrilaterals are Parallelograms

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $AB \cong DC, AD \cong BC$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $DB \cong DB$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>3. $\triangle ABD \cong \triangle CDB$</td>
<td>SSS</td>
</tr>
<tr>
<td>4. $\angle ABD \cong \angle BDC, \angle ADB \cong \angle DBC$</td>
<td>CPCTC</td>
</tr>
<tr>
<td>5. $AB \parallel DC, AD \parallel BC$</td>
<td>Alternate Interior Angles Converse</td>
</tr>
<tr>
<td>6. $ABCD$ is a parallelogram</td>
<td>Definition of a parallelogram</td>
</tr>
</tbody>
</table>

Example 1: Write a two-column proof.

![Diagram of a parallelogram](image)

Given: $AB \parallel DC$, and $AB \cong DC$
Prove: $ABCD$ is a parallelogram

Solution:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $AB \parallel DC$, and $AB \cong DC$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle ABD \cong \angle BDC$</td>
<td>Alternate Interior Angles</td>
</tr>
<tr>
<td>3. $DB \cong DB$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>4. $\triangle ABD \cong \triangle CDB$</td>
<td>SAS</td>
</tr>
<tr>
<td>5. $AD \cong BC$</td>
<td>CPCTC</td>
</tr>
<tr>
<td>6. $ABCD$ is a parallelogram</td>
<td>Opposite Sides Converse</td>
</tr>
</tbody>
</table>

Theorem 6-10: If a quadrilateral has one set of parallel lines that are also congruent, then it is a parallelogram. If $AB \parallel DC$ and $AB \cong DC$, then $ABCD$ is a parallelogram.
Example 2: Is quadrilateral $EFGH$ a parallelogram? How do you know?

Solution:

a) By the Opposite Angles Theorem Converse, $EFGH$ is a parallelogram.

b) $EFGH$ is not a parallelogram because the diagonals do not bisect each other.

Example 3: Algebra Connection What value of x would make $ABCD$ a parallelogram?

Solution: $AB \parallel DC$. By Theorem 6-10, $ABCD$ would be a parallelogram if $AB = DC$.

$$5x - 8 = 2x + 13$$
$$3x = 21$$
$$x = 7$$

Showing a Quadrilateral is a Parallelogram in the $x - y$ plane

To show that a quadrilateral is a parallelogram in the $x - y$ plane, you might need:

- The Slope Formula: $\frac{y_2 - y_1}{x_2 - x_1}$
- The Distance Formula: $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.
- The Midpoint Formula: $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.

Example 4: Is the quadrilateral $ABCD$ a parallelogram?
6.3. Proving Quadrilaterals are Parallelograms

Solution: Let’s use Theorem 6-10 to see if $ABCD$ is a parallelogram. First, find the length of AB and CD.

\[
AB = \sqrt{(-1 - 3)^2 + (5 - 3)^2} \\
= \sqrt{(-4)^2 + 2^2} \\
= \sqrt{16 + 4} \\
= \sqrt{20}
\]

\[
CD = \sqrt{(2 - 6)^2 + (-2 + 4)^2} \\
= \sqrt{(-4)^2 + 2^2} \\
= \sqrt{16 + 4} \\
= \sqrt{20}
\]

Find the slopes.

\[
\text{Slope } AB = \frac{5 - 3}{-1 - 3} = \frac{2}{4} = -\frac{1}{2} \quad \text{Slope } CD = \frac{-2 + 4}{2 - 6} = \frac{2}{-4} = -\frac{1}{2}
\]

$AB = CD$ and the slopes are the same, $ABCD$ is a parallelogram.

Example 5: Is the quadrilateral $RSTU$ a parallelogram?

Solution: Let’s use the Parallelogram Diagonals Converse to see if $RSTU$ is a parallelogram. Find the midpoint of each diagonal.

324
Midpoint of $RT = \left(\frac{-4+3}{2}, \frac{3-4}{2} \right) = (-0.5, -0.5)$

Midpoint of $SU = \left(\frac{4-5}{2}, \frac{5-5}{2} \right) = (-0.5, 0)$

$RSTU$ is not a parallelogram because the midpoints are not the same.

Know What? Revisited Use the Pythagorean Theorem to find the length of the second diagonal.

$$90^2 + 90^2 = d^2$$

$$8100 + 8100 = d^2$$

$$16200 = d^2$$

$$d = 127.3$$

The diagonals are equal, so the other two sides of the diamond must also be 90 feet. The baseball diamond is a parallelogram, and more specifically, a square.

Review Questions

- Questions 1-12 are similar to Example 2.
- Questions 13-15 are similar to Example 3.
- Questions 16-22 are similar to Examples 4 and 5.
- Questions 23-25 are similar to Example 1 and the proof of the Opposite Sides Converse.

For questions 1-12, determine if the quadrilaterals are parallelograms.
6.3. Proving Quadrilaterals are Parallelograms

3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
Algebra Connection For questions 13-18, determine the value of \(x \) and \(y \) that would make the quadrilateral a parallelogram.

For questions 19-22, determine if \(ABCD \) is a parallelogram.

19. \(A(8, -1), B(6, 5), C(-7, 2), D(-5, -4) \)
20. \(A(-5, 8), B(-2, 9), C(3, 4), D(0, 3) \)
21. \(A(-2, 6), B(4, -4), C(13, -7), D(4, -10) \)
22. \(A(-9, -1), B(-7, 5), C(3, 8), D(1, 2) \)

Fill in the blanks in the proofs below.

23. **Opposite Angles Theorem Converse**
Given: \(\angle A \cong \angle C, \angle D \cong \angle B \)
Prove: \(ABCD \) is a parallelogram

Table 6.8:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. (m\angle A = m\angle C, m\angle D = m\angle B)</td>
<td>Definition of a quadrilateral</td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4. (m\angle A + m\angle A + m\angle B + m\angle B = 360^\circ)</td>
<td>Combine Like Terms</td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Division PoE</td>
</tr>
<tr>
<td>7. (\angle A) and (\angle B) are supplementary</td>
<td></td>
</tr>
<tr>
<td>8. (\angle A) and (\angle D) are supplementary</td>
<td></td>
</tr>
<tr>
<td>9. (ABCD) is a parallelogram</td>
<td>Consecutive Interior Angles Converse</td>
</tr>
</tbody>
</table>

24. **Parallelogram Diagonals Theorem Converse**

Given: \(AE \cong EC, DE \cong EB \)
Prove: \(ABCD \) is a parallelogram

Table 6.9:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Vertical Angles Theorem</td>
</tr>
<tr>
<td>3. (\triangle AED \cong \triangle CEB)</td>
<td></td>
</tr>
<tr>
<td>(\triangle AEB \cong \triangle CED)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5. (ABCD) is a parallelogram</td>
<td></td>
</tr>
</tbody>
</table>

25. Given: \(\angle ADB \cong \angle CBD, AD \cong BC \)
Prove: \(ABCD \) is a parallelogram
Table 6.10:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. $AD \parallel BC$</td>
<td></td>
</tr>
<tr>
<td>3. $ABCD$ is a parallelogram</td>
<td></td>
</tr>
</tbody>
</table>

Review Queue Answers

1.

(a) Slope $AB = \text{Slope } CD = -\frac{1}{2}$

(b) Slope $AD = \text{Slope } BC = \frac{2}{3}$

$ABCD$ is a parallelogram because the opposite sides are parallel.

(b) Midpoint of $BD = (0, -2)$

Midpoint of $AC = (0, -2)$

Yes, the midpoints of the diagonals are the same, so they bisect each other.
6.4 Rectangles, Rhombuses and Squares

Learning Objectives

- Define a rectangle, rhombus, and square.
- Determine if a parallelogram is a rectangle, rhombus, or square in the $x - y$ plane.
- Compare the diagonals of a rectangle, rhombus, and square.

Review Queue

1. List five examples where you might see a square, rectangle, or rhombus in real life.
2. Find the values of x and y that would make the quadrilateral a parallelogram.

Know What? You are designing a patio for your backyard and are marking it off with a tape measure. Two sides are 21 feet long and two sides are 28 feet long. Explain how you would only use the tape measure to make your patio a rectangle. (You do not need to find any measurements.)
Defining Special Parallelograms

Rectangles, Rhombuses (also called Rhombi) and Squares are all more specific versions of parallelograms, also called special parallelograms. Taking the theorems we learned in the previous two sections, we have three more new theorems.

Rectangle Theorem: A quadrilateral is a rectangle if and only if it has four right (congruent) angles.

\[\text{ABCD is a rectangle if and only if } \angle A \cong \angle B \cong \angle C \cong \angle D. \]

Rhombus Theorem: A quadrilateral is a rhombus if and only if it has four congruent sides.

\[\text{ABCD is a rhombus if and only if } AB \cong BC \cong CD \cong AD. \]

Square Theorem: A quadrilateral is a square if and only if it has four right angles and four congruent sides.

\[\text{ABCD is a square if and only if } \angle A \cong \angle B \cong \angle C \cong \angle D \text{ and } AB \cong BC \cong CD \cong AD. \]

From the Square Theorem, we can also conclude that a square is a rectangle and a rhombus.

Example 1: What type of parallelogram are the ones below?

a)
6.4 Rectangles, Rhombuses and Squares

Solution:

a) All sides are congruent and one angle is 135°, so the angles are not congruent. This is a rhombus.

b) All four congruent angles and the sides are not. This is a rectangle.

Example 2: Is a rhombus SOMETIMES, ALWAYS, or NEVER a square? Explain why.

Solution: A rhombus has four congruent sides and a square has four congruent sides and angles. Therefore, a rhombus is a square when it has congruent angles. This means a rhombus is SOMETIMES a square.

Example 3: Is a rectangle SOMETIMES, ALWAYS, or NEVER a parallelogram? Explain why.

Solution: A rectangle has two sets of parallel sides, so it is ALWAYS a parallelogram.

Diagonals in Special Parallelograms

Recall from previous lessons that the diagonals in a parallelogram bisect each other. Therefore, the diagonals of a rectangle, square and rhombus also bisect each other. They also have additional properties.

Investigation 6-3: Drawing a Rectangle

Tools Needed: pencil, paper, protractor, ruler

1. Like with Investigation 6-2, draw two lines on either side of your ruler, making them parallel. Make these lines 3 inches long.

2. Using the protractor, mark two 90° angles, 2.5 inches apart on the bottom line from Step 1. Extend the sides to intersect the top line.

3. Draw in the diagonals and measure. What do you discover?
Theorem 6-14: A parallelogram is a rectangle if the diagonals are congruent.

\[AB \parallel CD \text{ and } AD \parallel BC \]

Investigation 6-4: Drawing a Rhombus

Tools Needed: pencil, paper, protractor, ruler

1. Like with Investigation 6-2 and 6-3, draw two lines on either side of your ruler, 3 inches long.

2. Remove the ruler and mark a 50° angle, at the left end of the bottom line drawn in Step 1. Draw the other side of the angle and make sure it intersects the top line. Measure the length of this side.

3. Mark the length found in Step 2 on the bottom line and the top line from the point of intersection with the 50° angle. Draw in the fourth side. It will connect the two endpoints of these lengths.

4. By the way we drew this parallelogram; it is a rhombus because all the sides are equal. Draw in the diagonals. Measure the angles at the point of intersection of the diagonals (4).

Measure the angles created by the sides and each diagonal (8).

Theorem 6-15: A parallelogram is a rhombus if the diagonals are perpendicular.
6.4. Rectangles, Rhombuses and Squares

Theorem 6-16: A parallelogram is a rhombus if the diagonals bisect each angle.

Example 4: List everything you know about the square SQRE.

Solution: A square has all the properties of a parallelogram, rectangle and rhombus.

Table 6.11:

<table>
<thead>
<tr>
<th>Properties of a Parallelogram</th>
<th>Properties of a Rhombus</th>
<th>Properties of a Rectangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SQ \parallel ER)</td>
<td>(SQ \cong ER \cong SE \cong QR)</td>
<td>(m\angle SER = m\angle SQR = m\angle QSE = m\angle QRE = 90^\circ)</td>
</tr>
<tr>
<td>(SE \parallel QR)</td>
<td>(SR \perp QE)</td>
<td></td>
</tr>
<tr>
<td>(\angle SEQ \cong \angle QER \cong \angle SQE \cong \angle EQR)</td>
<td>(\overline{SR} \cong \overline{QE})</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.11: (continued)

<table>
<thead>
<tr>
<th>Properties of a Parallelogram</th>
<th>Properties of a Rhombus</th>
<th>Properties of a Rectangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\angle QSR \cong \angle RSE \cong \angle QRS \cong \angle SRE)</td>
<td>(\overline{SA} \cong \overline{AR} \cong \overline{QA} \cong \overline{AE})</td>
<td></td>
</tr>
</tbody>
</table>

All the bisected angles are 45°.

Parallelograms in the Coordinate Plane

Example 4: Determine what type of parallelogram \(TUNE \) is: \(T(0, 10), U(4, 2), N(-2,-1), \) and \(E(-6,7) \).

Solution: Let’s see if the diagonals are equal. If they are, then \(TUNE \) is a rectangle.

\[
EU = \sqrt{(-6-4)^2 + (7-2)^2} \\
= \sqrt{100+25} \\
= \sqrt{125}
\]

\[
TN = \sqrt{(0+2)^2 + (10+1)^2} \\
= \sqrt{4+121} \\
= \sqrt{125}
\]

If the diagonals are also perpendicular, then \(TUNE \) is a square.

Slope of \(EU = \frac{7-2}{-6-4} = -\frac{1}{2} \)
Slope of \(TN = \frac{10-7}{0-(-6)} = \frac{3}{6} = \frac{1}{2} \)

The slope of \(EU \neq \) slope of \(TN \), so \(TUNE \) is a rectangle.

Steps to determine if a quadrilateral is a parallelogram, rectangle, rhombus, or square.

1. Graph the four points on **graph paper**.
2. See if the **diagonals bisect each other**. (midpoint formula)
6.4. Rectangles, Rhombuses and Squares

Yes: Parallelogram, continue to #2. No: A quadrilateral, done.

3. See if the diagonals are equal. (distance formula)

Yes: Rectangle, skip to #4. No: Could be a rhombus, continue to #3.

4. See if the sides are congruent. (distance formula)

Yes: Rhombus, done. No: Parallelogram, done.

5. See if the diagonals are perpendicular. (find slopes)

Yes: Square, done. No: Rectangle, done.

Know What? Revisited In order for the patio to be a rectangle, the opposite sides must be congruent (see picture). To ensure that the parallelogram is a rectangle without measuring the angles, the diagonals must be equal.

\[
\begin{array}{c}
21 \text{ ft.} \\
28 \text{ ft.} \\
21 \text{ ft.} \\
28 \text{ ft.}
\end{array}
\]

Review Questions

• Questions 1-3 are similar to #2 in the Review Queue and Example 1.
• Questions 4-15 are similar to Example 1.
• Questions 16-21 are similar to Examples 2 and 3.
• Questions 22-25 are similar to Investigations 6-3 and 6-4.
• Questions 26-29 are similar to Example 4.
• Question 30 is a challenge.

1. RACE is a rectangle. Find:
 a. RG
 b. AE
 c. AC
 d. EC
 e. \(m \angle RAC \)

2. DIAM is a rhombus. Find:
 a. MA

336
b. MI

c. DA

d. $m\angle DIA$

e. $m\angle MOA$

3. $CUBE$ is a square. Find:

a. $m\angle UCE$

b. $m\angle EYB$

c. $m\angle UBY$

d. $m\angle UEB$

For questions 4-15, determine if the quadrilateral is a parallelogram, rectangle, rhombus, square or none.
For questions 16-21 determine if the following are ALWAYS, SOMETIME, or NEVER true. Explain your reasoning.

16. A rectangle is a rhombus.
17. A square is a parallelogram.
18. A parallelogram is regular.
19. A square is a rectangle.
20. A rhombus is equiangular.
21. A quadrilateral is a pentagon.

Construction Draw or construct the following quadrilaterals.

22. A quadrilateral with congruent diagonals that is not a rectangle.
23. A quadrilateral with perpendicular diagonals that is not a rhombus or square.
24. A rhombus with a 6 cm diagonal and an 8 cm diagonal.
25. A square with 2 inch sides.

For questions 26-29, determine what type of quadrilateral \(ABCD\) is. Use Example 4 and the steps following it to help you.

26. \(A(-2,4), B(-1,2), C(-3,1), D(-4,3)\)
27. \(A(-2,3), B(3,4), C(2,-1), D(-3,-2)\)
28. \(A(1,-1), B(7,1), C(8,-2), D(2,-4)\)
29. \(A(10,4), B(8,-2), C(2,2), D(4,8)\)
30. Challenge \(SRUE\) is a rectangle and \(PRUC\) is a square.
 a. What type of quadrilateral is \(SPCE\)?
 b. If \(SR = 20\) and \(RU = 12\), find \(CE\).
 c. Find \(SC\) and \(RC\) based on the information from part b. Round your answers to the nearest hundredth.

Review Queue Answers

1. Possibilities: picture frame, door, baseball diamond, windows, walls, floor tiles, book cover, pages/paper, table/desk top, black/white board, the diamond suit (in a deck of cards).
 a. \(x = 11, \ y = 6\)
 b. \(x = y = 90^\circ\)
 c. \(x = 9, \ y = 133^\circ\)
Learning Objectives

- Define trapezoids, isosceles trapezoids, and kites.
- Define the midsegments of trapezoids.
- Plot trapezoids, isosceles trapezoids, and kites in the $x-y$ plane.

Review Queue

1. Draw a quadrilateral with one set of parallel lines.
2. Draw a quadrilateral with one set of parallel lines and two right angles.
3. Draw a quadrilateral with one set of parallel lines and two congruent sides.
4. Draw a quadrilateral with one set of parallel lines and three congruent sides.

Know What? A kite, seen at the right, is made by placing two pieces of wood perpendicular to each other and one piece of wood is bisected by the other. The typical dimensions are included in the picture. If you have two pieces of wood, 36 inches and 54 inches, determine the values of x and $2x$.

Trapezoids

Trapezoid: A quadrilateral with exactly one pair of parallel sides.
Isosceles Trapezoid: A trapezoid where the non-parallel sides are congruent.

Isosceles Trapezoids

Previously, we introduced the Base Angles Theorem with isosceles triangles, which says, the two base angles are congruent. This property holds true for isosceles trapezoids. *The two angles along the same base in an isosceles trapezoid are congruent.*

Theorem 6-17: The base angles of an isosceles trapezoid are congruent.

If $ABCD$ is an isosceles trapezoid, then $\angle A \cong \angle B$ and $\angle C \cong \angle D$.

Example 1: Look at trapezoid $TRAP$ below. What is $m\angle A$?

Solution: $TRAP$ is an isosceles trapezoid. $m\angle R = 115^\circ$ also.

To find $m\angle A$, set up an equation.

\[
115^\circ + 115^\circ + m\angle A + m\angle P = 360^\circ \\
230^\circ + 2m\angle A = 360^\circ \\
2m\angle A = 130^\circ \\
m\angle A = 65^\circ
\]
Notice that $m\angle R + m\angle A = 115^\circ + 65^\circ = 180^\circ$. These angles will always be supplementary because of the Consecutive Interior Angles Theorem from Chapter 3.

Theorem 6-17 Converse: If a trapezoid has congruent base angles, then it is an isosceles trapezoid.

Example 2: Is $ZOID$ an isosceles trapezoid? How do you know?

Solution: $40^\circ \neq 35^\circ$, $ZOID$ is not an isosceles trapezoid.

Isosceles Trapezoid Diagonals Theorem: The diagonals of an isosceles trapezoid are congruent.

Example 3: Show $TA = RP$.

Solution: Use the distance formula to show $TA = RP$.

$$TA = \sqrt{(2-8)^2 + (4-0)^2} = \sqrt{(-6)^2 + 4^2} = \sqrt{36 + 16} = \sqrt{52}$$

$$RP = \sqrt{(6-0)^2 + (4-0)^2} = \sqrt{6^2 + 4^2} = \sqrt{36 + 16} = \sqrt{52}$$

Midsegment of a Trapezoid

Midsegment (of a trapezoid): A line segment that connects the midpoints of the non-parallel sides.
There is only one midsegment in a trapezoid. It will be parallel to the bases because it is located halfway between them.

Investigation 6-5: Midsegment Property

Tools Needed: graph paper, pencil, ruler

1. Plot \(A(-1,5), B(2,5), C(6,1)\) and \(D(-3,1)\) and connect them. This is NOT an isosceles trapezoid.

2. Find the midpoint of the non-parallel sides by using the midpoint formula. Label them \(E\) and \(F\). Connect the midpoints to create the midsegment.

3. Find the lengths of \(AB\), \(EF\), and \(CD\). What do you notice?

Midsegment Theorem: The length of the midsegment of a trapezoid is the average of the lengths of the bases.

If \(EF\) is the midsegment, then \(EF = \frac{AB + CD}{2}\).

Example 4: Algebra Connection Find \(x\). All figures are trapezoids with the midsegment.

a)

b)
6.5. Trapezoids and Kites

Solution:

a) x is the average of 12 and 26. \[\frac{12 + 26}{2} = \frac{38}{2} = 19 \]
b) 24 is the average of x and 35.

\[\frac{x + 35}{2} = 24 \]

\[x + 35 = 48 \]

\[x = 13 \]

c) 20 is the average of $5x - 15$ and $2x - 8$.

\[\frac{5x - 15 + 2x - 8}{2} = 20 \]

\[7x - 23 = 40 \]

\[7x = 63 \]

\[x = 9 \]

Kites

The last quadrilateral to study is a kite. Like you might think, it looks like a kite that flies in the air.

Kite: A quadrilateral with two sets of adjacent congruent sides.

From the definition, a kite could be concave. If a kite is concave, it is called a **dart**.

The angles between the congruent sides are called **vertex angles**. The other angles are called **non-vertex angles**. If we draw the diagonal through the vertex angles, we would have two congruent triangles.
Given: $KITE$ with $KE \cong TE$ and $KI \cong TI$

Prove: $\angle K \cong \angle T$

Theorem 6-21: The non-vertex angles of a kite are congruent.

If $KITE$ is a kite, then $\angle K \cong \angle T$.

Theorem 6-22: The diagonal through the vertex angles is the angle bisector for both angles.
If $KITE$ is a kite, then $\angle KEI \cong \angle IET$ and $\angle KIE \cong \angle EIT$.

The proof of Theorem 6-22 is very similar to the proof above for Theorem 6-21.

Kite Diagonals Theorem: The diagonals of a kite are perpendicular.

$\triangle KET$ and $\triangle KIT$ triangles are isosceles triangles, so EI is the perpendicular bisector of KT (Isosceles Triangle Theorem, Chapter 4).

Example 5: Find the missing measures in the kites below.

a)

b)

Solution:

a) The two angles left are the non-vertex angles, which are congruent.
\begin{align*}
130^\circ + 60^\circ + x + x &= 360^\circ \\
2x &= 170^\circ \\
x &= 85^\circ \quad \text{Both angles are } 85^\circ.
\end{align*}

b) The other non-vertex angle is also 94°. To find the fourth angle, subtract the other three angles from 360°.

\begin{align*}
90^\circ + 94^\circ + 94^\circ + x &= 360^\circ \\
x &= 82^\circ
\end{align*}

Be careful with the definition of a kite. The congruent pairs are distinct, which means that \textit{a rhombus and square cannot be a kite.}

\textbf{Example 6:} Use the Pythagorean Theorem to find the length of the sides of the kite.

\textbf{Solution:} Recall that the Pythagorean Theorem is $a^2 + b^2 = c^2$, where c is the hypotenuse. In this kite, the sides are the hypotenuses.

\begin{align*}
6^2 + 5^2 &= h^2 \\
36 + 25 &= h^2 \\
61 &= h^2 \\
\sqrt{61} &= h
\end{align*}

\begin{align*}
12^2 + 5^2 &= j^2 \\
144 + 25 &= j^2 \\
169 &= j^2 \\
13 &= j
\end{align*}

\textbf{Kites and Trapezoids in the Coordinate Plane}

\textbf{Example 7:} Determine what type of quadrilateral $RSTV$ is.
Solution: Find the lengths of all the sides.

\[RS = \sqrt{(-5 - 2)^2 + (7 - 6)^2} \]
\[= \sqrt{(-7)^2 + 1^2} \]
\[= \sqrt{50} \]

\[ST = \sqrt{(2 - 5)^2 + (6 - (-3))^2} \]
\[= \sqrt{(-3)^2 + 9^2} \]
\[= \sqrt{90} \]

\[RV = \sqrt{(-5 - (-4))^2 + (7 - 0)^2} \]
\[= \sqrt{(-1)^2 + 7^2} \]
\[= \sqrt{50} \]

\[VT = \sqrt{(-4 - 5)^2 + (0 - (-3))^2} \]
\[= \sqrt{(-9)^2 + 3^2} \]
\[= \sqrt{90} \]

From this we see that the adjacent sides are congruent. Therefore, \(RSTV \) is a kite.

Example 8: Determine what type of quadrilateral \(ABCD \) is. \(A(-3, 3), B(1, 5), C(4, -1), D(1, -5) \).

Solution: First, graph \(ABCD \). This will make it easier to figure out what type of quadrilateral it is. From the graph, we can tell this is not a parallelogram. Find the slopes of \(BC \) and \(AD \) to see if they are parallel.
Slope of $BC = \frac{5 - (-1)}{1 - 4} = \frac{6}{-3} = -2$
Slope of $AD = \frac{3 - (-5)}{-3 - 1} = \frac{8}{-4} = -2$

$BC \parallel AD$, so $ABCD$ is a trapezoid. To determine if it is an isosceles trapezoid, find AB and CD.

$$AB = \sqrt{(-3 - 1)^2 + (3 - 5)^2}$$
$$= \sqrt{(-4)^2 + (-2)^2}$$
$$= \sqrt{20} = 2\sqrt{5}$$

$$ST = \sqrt{(4 - 1)^2 + (-1 - (-5))^2}$$
$$= \sqrt{3^2 + 4^2}$$
$$= \sqrt{25} = 5$$

$AB \neq CD$, therefore this is only a trapezoid.

Example 9: Determine what type of quadrilateral $EFGH$ is. $E(5, -1), F(11, -3), G(5, -5), H(-1, -3)$

Solution: To contrast with Example 8, we will not graph this example. Let’s find the length of all four sides.

$$EF = \sqrt{(5 - 11)^2 + (-1 - (-3))^2}$$
$$= \sqrt{(-6)^2 + 2^2} = \sqrt{40}$$

$$FG = \sqrt{(11 - 5)^2 + (-3 - (-5))^2}$$
$$= \sqrt{6^2 + 2^2} = \sqrt{40}$$

$$GH = \sqrt{(5 - (-1))^2 + (-5 - (-3))^2}$$
$$= \sqrt{6^2 + (-2)^2} = \sqrt{40}$$

$$HE = \sqrt{(-1 - 5)^2 + (-3 - (-1))^2}$$
$$= \sqrt{(-6)^2 + (-2)^2} = \sqrt{40}$$

All four sides are equal. This quadrilateral is either a **rhombus** or a **square**. Let’s find the length of the diagonals.

$$EG = \sqrt{(5 - 5)^2 + (-1 - (-5))^2}$$
$$= \sqrt{0^2 + 4^2}$$
$$= \sqrt{16} = 4$$

$$FH = \sqrt{(11 - (-1))^2 + (-3 - (-3))^2}$$
$$= \sqrt{12^2 + 0^2}$$
$$= \sqrt{144} = 12$$

The diagonals are not congruent, so $EFGH$ is a rhombus.

Know What? Revisited If the diagonals (pieces of wood) are 36 inches and 54 inches, x is half of 36, or 18 inches. Then, $2x$ is 36.

Review Questions

- Questions 1 and 2 are similar to Examples 1, 2, 5 and 6.
- Questions 3 and 4 use the definitions of trapezoids and kites.
- Questions 5-10 are similar to Example 4.
- Questions 11-16 are similar to Examples 5 and 6.
- Questions 17-22 are similar to Examples 4-6.
- Questions 23 and 24 are similar to Example 3.
- Questions 25-28 are similar to Examples 7-9.
- Questions 29 and 30 are similar to the proof of Theorem 6-21.
1. **TRAP** an isosceles trapezoid. Find:
 a. \(m \angle TPA \)
 b. \(m \angle PTR \)
 c. \(m \angle ZRA \)
 d. \(m \angle PZA \)

2. **KITE** is a kite. Find:
 a. \(m \angle ETS \)
 b. \(m \angle KIT \)
 c. \(m \angle IST \)
 d. \(m \angle SIT \)
 e. \(m \angle ETI \)

3. **Writing** Can the parallel sides of a trapezoid be congruent? Why or why not?
4. **Writing** Besides a kite and a rhombus, can you find another quadrilateral with perpendicular diagonals? Explain and draw a picture.

For questions 5-10, find the length of the midsegment or missing side.
For questions 11-16, find the value of the missing variable(s). All figures are kites.
Algebra Connection For questions 17-22, find the value of the missing variable(s).

Find the lengths of the diagonals of the trapezoids below to determine if it is isosceles.

23. \(A(-3, 2), B(1, 3), C(3, -1), D(-4, -2)\)
24. \(A(-3, 3), B(2, -2), C(-6, -6), D(-7, 1)\)

For questions 25-28, determine what type of quadrilateral \(ABCD\) is. \(ABCD\) could be any quadrilateral that we have learned in this chapter. If it is none of these, write none.
25. $A(1, -2), B(7, -5), C(4, -8), D(-2, -5)$
26. $A(6, 6), B(10, 8), C(12, 4), D(8, 2)$
27. $A(-1, 8), B(1, 4), C(-5, -4), D(-5, 6)$
28. $A(5, -1), B(9, -4), C(6, -10), D(3, -5)$

Fill in the blanks to the proofs below.

29. Given: $KE \cong TE$ and $KI \cong TI$ Prove: EI is the angle bisector of $\angle KET$ and $\angle KIT$

![Diagram]

Table 6.13:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $KE \cong TE$ and $KI \cong TI$</td>
<td></td>
</tr>
<tr>
<td>2. $EI \cong EI$</td>
<td></td>
</tr>
<tr>
<td>3. $\triangle EKI \cong \triangle ETI$</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>CPCTC</td>
</tr>
<tr>
<td>5. EI is the angle bisector of $\angle KET$ and $\angle KIT$</td>
<td></td>
</tr>
</tbody>
</table>

30. Given: $EK \cong ET, KI \cong IT$ Prove: $KT \perp EI$

![Diagram]

Table 6.14:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $KE \cong TE$ and $KI \cong TI$</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Definition of isosceles triangles</td>
</tr>
<tr>
<td>3. EI is the angle bisector of $\angle KET$ and $\angle KIT$</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Isosceles Triangle Theorem</td>
</tr>
<tr>
<td>5. $KT \perp EI$</td>
<td></td>
</tr>
</tbody>
</table>

353
Review Queue Answers

1.

2.

3.

4.
Keywords and Theorems

Angles in Polygons

- Polygon Sum Formula
- Equiangular Polygon Formula
- Regular Polygon
- Exterior Angle Sum Theorem

Properties of Parallelograms

- Parallelogram
- Opposite Sides Theorem
- Opposite Angles Theorem
- Consecutive Angles Theorem
- Parallelogram Diagonals Theorem

Proving Quadrilaterals are Parallelograms

- Opposite Sides Theorem Converse
- Opposite Angles Theorem Converse
- Consecutive Angles Theorem Converse
- Parallelogram Diagonals Theorem Converse
- Theorem 6-10

Rectangles, Rhombuses, and Squares

- Rectangle Theorem
- Rhombus Theorem
- Square Theorem
- Theorem 6-14
- Theorem 6-15
- Theorem 6-16

Trapezoids and Kites

- Trapezoid
- Isosceles Trapezoid
- Theorem 6-17
- Theorem 6-17 Converse
- Isosceles Trapezoid Diagonals Theorem
- Midsegment (of a trapezoid)
- Midsegment Theorem
• Kite
• Theorem 6-21
• Theorem 6-22
• Kite Diagonals Theorem

Quadrilateral Flow Chart

Fill in the flow chart according to what you know about the quadrilaterals we have learned in this chapter.

Table Summary

Determine if each quadrilateral has the given properties. If so, write yes or state how many sides (or angles) are congruent, parallel, or perpendicular.

TABLE 6.15:

<table>
<thead>
<tr>
<th>Opposite sides</th>
<th>Diagonals bisect each other</th>
<th>Diagonals ⊥</th>
<th>Opposite sides ≡</th>
<th>Opposite angles ≡</th>
<th>Consecutive Angles add up to 180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapezoid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isosceles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trapezoid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallelogram</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectangle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhombus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. How many degrees are in a:
 a. triangle
 b. quadrilateral
 c. pentagon
 d. hexagon

2. Find the measure of all the lettered angles below. The missing angle in the pentagon (at the bottom of the drawing), is 138°.
In the CK-12 Texas Instruments Geometry FlexBook® resource, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9691.
Keywords: Define, write theorems, and/or draw a diagram for each word below.

1st Section: Angles in Polygons

Polygon Sum Formula
Equiangular Polygon Formula
Regular Polygon
Exterior Angle Sum Theorem

2nd Section: Properties of Parallelograms

Parallelogram
Opposite Sides Theorem
Opposite Angles Theorem
Consecutive Angles Theorem
Parallelogram Diagonals Theorem

3rd Section: Proving Quadrilaterals are Parallelograms

Opposite Sides Theorem Converse
Opposite Angles Theorem Converse
Consecutive Angles Theorem Converse
Parallelogram Diagonals Theorem Converse
Theorem 6-10

Homework:

4th Section: Rectangles, Rhombuses, and Squares

Rectangle Theorem
Rhombus Theorem
Square Theorem

Theorem 6-14
Theorem 6-15
Theorem 6-16

Homework:

5th Section: Trapezoids and Kites

Trapezoid
Isosceles Trapezoid
Theorem 6-17
Theorem 6-17 Converse
Isosceles Trapezoid Diagonals Theorem
Midsegment (of a trapezoid)
Midsegment Theorem
Kite
Theorem 6-21
Theorem 6-22
Kite Diagonals Theorem

Homework:
In this chapter, we will start with a review of ratios and proportions. Second, we will introduce the concept of similarity and apply it to polygons, quadrilaterals and triangles. Then, we will extend proportionality to parallel lines and dilations. Finally, we conclude with an extension about fractals.
7.1 Ratios and Proportions

Learning Objectives

- Write and solve ratios and proportions.
- Use ratios and proportions in problem solving.

Review Queue

1. Are the two triangles congruent? If so, how do you know?

2. If $AC = 5$, what is GI? What is the reason?
3. How many inches are in a:
 - foot?
 - yard?
 - 3 yards?
 - 5 feet?

Know What? You want to make a scale drawing of your room and furniture for a little redecorating. Your room measures 12 feet by 12 feet. In your room are a twin bed (36 in by 75 in) and a desk (4 feet by 2 feet). You scale down your room to 8 in by 8 in, so it fits on a piece of paper. What size are the bed and desk in the drawing?

Using Ratios

Ratio: A way to compare two numbers. Ratios can be written: $\frac{a}{b}$, $a : b$, and a to b.

Example 1: There are 14 girls and 18 boys in your math class. What is the ratio of girls to boys?

Solution: The ratio would be 14:18. This can be simplified to 7:9.

Example 2: The total bagel sales at a bagel shop for Monday is in the table below. What is the ratio of cinnamon raisin bagels to plain bagels?

<table>
<thead>
<tr>
<th>Type of Bagel</th>
<th>Number Sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 7.1:
Table 7.1: (continued)

<table>
<thead>
<tr>
<th>Type of Bagel</th>
<th>Number Sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cinnamon Raisin</td>
<td>30</td>
</tr>
<tr>
<td>Sesame</td>
<td>25</td>
</tr>
<tr>
<td>Jalapeno Cheddar</td>
<td>20</td>
</tr>
<tr>
<td>Everything</td>
<td>45</td>
</tr>
<tr>
<td>Honey Wheat</td>
<td>50</td>
</tr>
</tbody>
</table>

Solution: The ratio is 30:80. Reducing the ratio by 10, we get 3:8.

Reduce a ratio just like a fraction. Always reduce ratios.

Example 3: What is the ratio of *honey wheat* bagels to *total bagels* sold?

Solution: Order matters. Honey wheat is listed first, so that number comes first in the ratio (or on the top of the fraction). Find the total number of bagels sold, \(80 + 30 + 25 + 20 + 45 + 50 = 250\).

The ratio is \(\frac{50}{250} = \frac{1}{5}\).

Equivalent Ratios: When two or more ratios reduce to the same ratio.

50:250 and 2:10 are *equivalent* because they both reduce to 1:5.

Example 4: What is the ratio of *cinnamon raisin* bagels to *sesame* bagels to *jalapeno cheddar* bagels?

Solution: 30:25:20, which reduces to 6:5:4.

Converting Measurements

How many feet are in 2 miles? How many inches are in 4 feet? Ratios are used to convert these measurements.

Example 5: Simplify the following ratios.

a) \(\frac{7}{14} ft \div in\)

b) 9m:900cm

c) \(\frac{4}{16} \text{ gal} \div \text{gal}\)

Solution: Change these so that they are in the same units. There are 12 inches in a foot.

a) \(\frac{7 \times 12}{14 \times 12} = \frac{84}{144} = \frac{6}{12}\)

The inches cancel each other out. *Simplified ratios do not have units.*

b) It is easier to simplify a ratio when written as a fraction.

\(\frac{9 \times 100}{900 \times 100} = \frac{900}{900} = \frac{1}{1}\)

c) \(\frac{4}{16} \div \frac{4}{16} = \frac{4}{4}\)

Example 6: A talent show has dancers and singers. The ratio of dancers to singers is 3:2. There are 30 performers total, how many of each are there?

Solution: 3:2 is a reduced ratio, so there is a number, \(n\), that we can multiply both by to find the total number in each group.
dancers = 3n, singers = 2n \implies 3n + 2n = 30
5n = 30
n = 6

There are 3 \cdot 6 = 18 dancers and 2 \cdot 6 = 12 singers.

Solving Proportions

Proportion: Two ratios that are set equal to each other.

Example 7: Solve the proportions.

a) \(\frac{4}{5} = \frac{x}{30}\)

b) \(\frac{y+1}{8} = \frac{5}{20}\)

c) \(\frac{6}{5} = \frac{2x+5}{x-2}\)

Solution: To solve a proportion, you need to **cross-multiply**.

a)

\[
\frac{4}{5} = \frac{x}{30} \\
4 \cdot 30 = 5 \cdot x \\
120 = 5x \\
24 = x
\]

b)

\[
\frac{y+1}{8} = \frac{5}{20} \\
(y+1) \cdot 20 = 5 \cdot 8 \\
20y + 20 = 40 \\
20y = 20 \\
y = 1
\]

c)

\[
\frac{6}{5} = \frac{2x+4}{x-2} \\
6 \cdot (x-2) = 5 \cdot (2x+4) \\
6x-12 = 10x+20 \\
-32 = 4x \\
-8 = x
\]

Cross-Multiplication Theorem: \(a, b, c,\) and \(d\) are real numbers, with \(b \neq 0\) and \(d \neq 0\). If \(\frac{a}{b} = \frac{c}{d}\), then \(ad = bc\).

The proof of the Cross-Multiplication Theorem is an algebraic proof. Recall that multiplying by the same number over itself is 1 \((b \div b = 1)\).

Proof of the Cross-Multiplication Theorem
\[\frac{a}{b} = \frac{c}{d} \]
Multiply the left side by \(\frac{d}{d} \) and the right side by \(\frac{b}{b} \).
\[\frac{a}{b} \cdot \frac{d}{d} = \frac{c}{d} \cdot \frac{b}{b} \]
The denominators are the same, so the tops are equal.

Example 8: Your parents have an architect’s drawing of their home. On the paper, the house’s dimensions are 36 in by 30 in. If the shorter length of the house is actually 50 feet, what is the longer length?

Solution: Set up a proportion. If the shorter length is 50 feet, then it lines up with 30 in, the shorter length of the paper dimensions.

\[\frac{30}{36} = \frac{50}{x} \rightarrow 1800 = 30x \]

\[60 = x \quad \text{The longer length is 60 feet.} \]

Properties of Proportions

The Cross-Multiplication Theorem has several sub-theorems, called **corollaries**.

Corollary: A theorem that follows directly from another theorem.

Below are three corollaries that are immediate results of the Cross Multiplication Theorem.

Corollary 7-1: If \(a, b, c, \) and \(d \) are nonzero and \(\frac{a}{b} = \frac{c}{d} \), then \(\frac{a}{c} = \frac{b}{d} \). **Switch b and c.**

Corollary 7-2: If \(a, b, c, \) and \(d \) are nonzero and \(\frac{a}{b} = \frac{c}{d} \), then \(\frac{d}{b} = \frac{c}{a} \). **Switch a and d.**

Corollary 7-3: If \(a, b, c, \) and \(d \) are nonzero and \(\frac{a}{b} = \frac{c}{d} \), then \(\frac{b}{a} = \frac{c}{d} \). **Flip each ratio upside down.**

In each corollary, you will still end up with \(ad = bc \) after cross-multiplying.

Example 9: Suppose we have the proportion \(\frac{2}{5} = \frac{14}{35} \). Write three true proportions that follow.

Solution: First of all, we know this is a true proportion because you would multiply \(\frac{2}{5} \) by \(\frac{7}{7} \) to get \(\frac{14}{35} \). Using the three corollaries:

1. \(\frac{2}{14} = \frac{5}{35} \)
2. \(\frac{35}{14} = \frac{14}{2} \)
3. \(\frac{5}{2} = \frac{35}{14} \)

Corollary 7-4: If \(a, b, c, \) and \(d \) are nonzero and \(\frac{a}{b} = \frac{c}{d} \), then \(\frac{a+b}{b} = \frac{c+d}{d} \).

Corollary 7-5: If \(a, b, c, \) and \(d \) are nonzero and \(\frac{a}{b} = \frac{c}{d} \), then \(\frac{a-b}{b} = \frac{c-d}{d} \).

Example 10: In the picture, \(\frac{AB}{XY} = \frac{BC}{YZ} = \frac{AC}{XZ} \).

Find the measures of \(AC \) and \(XY \).
7.1. Ratios and Proportions

Solution: Plug in the lengths of the sides we know.

\[
\frac{4}{XY} = \frac{3}{9} \quad \frac{3}{A} = \frac{A}{15}
\]

\[36 = 3(XY) \quad 9(A) = 45\]

\[XY = 12 \quad A = 5\]

Example 11: In the picture, \(\frac{ED}{AD} = \frac{BC}{AC}\). Find \(y\).

Solution: Substitute in the lengths of the sides we know.

\[
\frac{6}{y} = \frac{8}{12 + 8} \rightarrow 8y = 6(20)
\]

\[y = 15\]

Example 12: If \(\frac{AB}{BE} = \frac{AC}{CD}\) in the picture above, find \(BE\).

Solution:

\[
\frac{12}{BE} = \frac{20}{25} \rightarrow 20(BE) = 12(25)
\]

\[BE = 15\]

Know What? Revisited Everything needs to be scaled down by a factor of \(\frac{1}{18}\) (144 in ÷ 8 in). Change everything into inches and then multiply by the scale factor.

Bed: 36 in by 75 in \(\rightarrow\) 2 in by 4.167 in

Desk: 48 in by 24 in \(\rightarrow\) 2.67 in by 1.33 in

Review Questions

- Questions 1 and 2 are similar to Examples 1-4.
- Questions 7-13 are similar to Example 5.
- Questions 14-19, 26, and 27 are similar to Example 6 and 8.
- Questions 20-25 are similar to Example 7.
- Questions 28-31 are similar to Example 9.
- Questions 32-35 are similar to Examples 10-12.
1. The votes for president in a club election were: Smith : 24, Munoz : 32, Park : 20. Find the following ratios and write in simplest form.
 a. Votes for Munoz to Smith
 b. Votes for Park to Munoz
 c. Votes for Smith to total votes
 d. Votes for Smith to Munoz to Park

Use the picture to write the following ratios for questions 2-6.

\[AEFD\] is a square \[ABCD\] is a rectangle

2. \[AE : EF\]
3. \[EB : AB\]
4. \[DF : FC\]
5. \[EF : BC\]
6. Perimeter \[ABCD\] : Perimeter \[AEFD\] : Perimeter \[EBCF\]

Convert the following measurements.

7. 16 cups to gallons
8. 8 yards to feet
9. 6 meters to centimeters

Simplify the following ratios.

10. \[\frac{25 \text{ in}}{5 \text{ ft}}\]
11. \[\frac{8 \text{ pt}}{2 \text{ gal}}\]
12. \[\frac{9 \text{ ft}}{3 \text{ yd}}\]
13. \[\frac{95 \text{ cm}}{1.5 \text{ m}}\]

14. The measures of the angles of a triangle are have the ratio 3:3:4. What are the measures of the angles?
15. The length and width of a rectangle are in a 3:5 ratio. The perimeter of the rectangle is 64. What are the length and width?
16. The length and width of a rectangle are in a 4:7 ratio. The perimeter of the rectangle is 352. What are the length and width?
17. A math class has 36 students. The ratio of boys to girls is 4:5. How many girls are in the class?
18. The senior class has 450 students in it. The ratio of boys to girls is 8:7. How many boys are in the senior class?
19. The varsity football team has 50 players. The ratio of seniors to juniors is 3:2. How many seniors are on the team?
Solve each proportion.

20. \(\frac{x}{10} = \frac{42}{35} \)
21. \(\frac{x}{x+2} = \frac{5}{7} \)
22. \(\frac{6}{7} = \frac{y}{24} \)
23. \(\frac{x}{y} = \frac{16}{x} \)
24. \(\frac{y^2-3}{8} = \frac{y+6}{5} \)
25. \(\frac{20}{x+5} = \frac{16}{7} \)

26. Shawna drove 245 miles and used 8.2 gallons of gas. At the same rate, if she drove 416 miles, how many gallons of gas will she need? Round to the nearest tenth.

27. The president, vice-president, and financial officer of a company divide the profits is a 4:3:2 ratio. If the company made $1,800,000 last year, how much did each person receive?

Given the true proportion, \(\frac{10}{6} = \frac{x}{d} = \frac{y}{y} \) and \(d, x, \) and \(y \) are nonzero, determine if the following proportions are also true.

28. \(\frac{10}{y} = \frac{x}{6} \)
29. \(\frac{15}{10} = \frac{d}{6} \)
30. \(\frac{6+10}{y} = \frac{y+x}{x} \)
31. \(\frac{15}{x} = \frac{y}{d} \)

For questions 32-35, \(\frac{AE}{ED} = \frac{BC}{CD} \) and \(\frac{ED}{MD} = \frac{CD}{DB} = \frac{EC}{AB} \).

32. Find \(DB \).
33. Find \(EC \).
34. Find \(CB \).
35. Find \(AD \).

Review Queue Answers

1. Yes, they are congruent by SAS.
2. \(GI = 5 \) by CPCTC
3. a. 12 in = 1 ft
 b. 36 in = 3 ft
 c. 108 in = 3 yd
 d. 60 in = 5 ft.
7.2 Similar Polygons

Learning Objectives

- Recognize similar polygons.
- Identify corresponding angles and sides of similar polygons from a similarity statement.
- Use scale factors.

Review Queue

1. Solve the proportions.
 a. \(\frac{6}{3} = \frac{10}{x} \)
 b. \(\frac{3}{7} = \frac{3x + 1}{x^2} \)
 c. \(\frac{5}{8} = \frac{x - 2}{2x} \)

2. In the picture, \(\frac{AB}{XZ} = \frac{BC}{XY} = \frac{AC}{YZ} \).
 a. Find \(AB \).
 b. Find \(BC \).
 c. What is \(AB : XZ \)?

Know What? A baseball diamond is a square with 90 foot sides. A softball diamond is a square with 60 foot sides. Are the two diamonds similar? If so, what is the scale factor?

Similar Polygons

Think about similar polygons as enlarging or shrinking the same shape. The symbol \(\sim \) is used to represent similar.

Similar Polygons: Two polygons with the same shape, but not the same size. The corresponding angles are congruent, and the corresponding sides are proportional.
These polygons are not similar:

![Polygons](image)

Example 1: Suppose \(\triangle ABC \sim \triangle JKL \). Based on the similarity statement, which angles are congruent and which sides are proportional?

Solution: Just like a congruence statement, the congruent angles line up within the statement. So, \(\angle A \cong \angle J \), \(\angle B \cong \angle K \), and \(\angle C \cong \angle L \). Write the sides in a proportion, \(\frac{AB}{JK} = \frac{BC}{KL} = \frac{AC}{JL} \).

Because of the corollaries we learned in the last section, the proportions in Example 1 could be written several different ways. For example, \(\frac{AB}{BC} = \frac{JK}{KL} \) is also true.

Example 2: \(MNPQ \sim RSTU \). What are the values of \(x \), \(y \) and \(z \)?

Solution: In the similarity statement, \(\angle M \cong \angle R \), so \(z = 115^\circ \). For \(x \) and \(y \), set up a proportion.

\[
\frac{18}{30} = \frac{x}{25} \quad \frac{18}{30} = \frac{15}{y} \\
450 = 30x \quad 450 = 18y \\
x = 15 \quad y = 25
\]

Specific types of triangles, quadrilaterals, and polygons will always be similar. For example, all equilateral triangles are similar and all squares are similar.

Example 3: \(ABCD \) and \(UVWX \) are below. Are these two rectangles similar?

Solution: All the corresponding angles are congruent because the shapes are rectangles. Let’s see if the sides are proportional. \(\frac{8}{12} = \frac{2}{3} \) and \(\frac{18}{24} = \frac{3}{4} \). \(\frac{2}{3} \neq \frac{3}{4} \), so the sides are not in the same proportion, so the rectangles are not similar.
Scale Factors

If two polygons are similar, we know the lengths of corresponding sides are proportional.

Scale Factor: In similar polygons, the ratio of one side of a polygon to the corresponding side of the other.

Example 4: What is the scale factor of \(\triangle ABC \) to \(\triangle XYZ \)? Write the similarity statement.

![Image of triangles](image)

Solution: All the sides are in the same ratio. Pick the two largest (or smallest) sides to find the ratio.

\[
\frac{15}{20} = \frac{3}{4}
\]

For the similarity statement, line up the proportional sides. \(AB \rightarrow XY, BC \rightarrow XZ, AC \rightarrow YZ \), so \(\triangle ABC \sim \triangle XYZ \).

Example 5: \(ABCD \sim AMNP \). Find the scale factor and the length of \(BC \).

![Image of rectangles](image)

Solution: Line up the corresponding sides. \(AB : AM \), so the scale factor is \(\frac{30}{45} = \frac{\frac{2}{3}}{1} \) or \(\frac{3}{2} \). Because \(BC \) is in the bigger rectangle, we will multiply 40 by \(\frac{3}{2} \) because it is greater than 1. \(BC = \frac{3}{2}(40) = 60 \).

Example 6: Find the perimeters of \(ABCD \) and \(AMNP \). Then find the ratio of the perimeters.

Solution: Perimeter of \(ABCD = 60 + 45 + 60 + 45 = 210 \)

Perimeter of \(AMNP = 40 + 30 + 40 + 30 = 140 \)

The ratio of the perimeters is 140:210, which reduces to 2:3.

Theorem 7-2: The ratio of the perimeters of two similar polygons is the same as the ratio of the sides.

In addition to the perimeter having the same ratio as the sides, **all parts of a polygon are in the same ratio as the sides.** This includes diagonals, medians, midsegments, altitudes, and others.

Example 7: \(\triangle ABC \sim \triangle MNP \). The perimeter of \(\triangle ABC \) is 150, \(AB = 32 \) and \(MN = 48 \). Find the perimeter of \(\triangle MNP \).

Solution: From the similarity statement, \(AB \) and \(MN \) are corresponding sides. The scale factor is \(\frac{32}{48} = \frac{2}{3} \). \(\triangle ABC \) is the smaller triangle, so the perimeter of \(\triangle MNP \) is \(\frac{3}{2}(150) = 225 \).

Know What? Revisited The baseball diamond is on the left and the softball diamond is on the right. All the angles and sides are congruent, so all squares are similar. All of the sides in the baseball diamond are 90 feet long and 60 feet long in the softball diamond. This means the scale factor is \(\frac{90}{60} = \frac{3}{2} \).
7.2. Similar Polygons

Review Questions

- Questions 1-8 use the definition of similarity and different types of polygons.
- Questions 9-13 are similar to Examples 1, 5, 6, and 7.
- Questions 14 and 15 are similar to the Know What?
- Questions 16-20 are similar to Example 2.
- Questions 21-30 are similar to Examples 3 and 4.

For questions 1-8, determine if the following statements are true or false.

1. All equilateral triangles are similar.
2. All isosceles triangles are similar.
3. All rectangles are similar.
4. All rhombuses are similar.
5. All squares are similar.
6. All congruent polygons are similar.
7. All similar polygons are congruent.
8. All regular pentagons are similar.
9. $\triangle BIG \sim \triangle HAT$. List the congruent angles and proportions for the sides.
10. If $BI = 9$ and $HA = 15$, find the scale factor.
11. If $BG = 21$, find HT.
12. If $AT = 45$, find IG.
13. Find the perimeter of $\triangle BIG$ and $\triangle HAT$. What is the ratio of the perimeters?
14. An NBA basketball court is a rectangle that is 94 feet by 50 feet. A high school basketball court is a rectangle that is 84 feet by 50 feet. Are the two rectangles similar?
15. HD TVs have sides in a ratio of 16:9. Non-HD TVs have sides in a ratio of 4:3. Are these two ratios equivalent?

Use the picture to the right to answer questions 16-20.

16. Find $m\angle E$ and $m\angle Q$.
17. $ABCDE \sim QLMNP$, find the scale factor.
18. Find BC.

372
19. Find CD.
20. Find NP.

Determine if the following triangles and quadrilaterals are similar. If they are, write the similarity statement.
Review Queue Answers

a. \(x = 9 \)
b. \(x = 11.5 \)
c. \(x = 8 \)

a. \(AB = 16 \)
b. \(BC = 14 \)
c. \(\frac{2}{3} \)
7.3 Similarity by AA

Learning Objectives

- Determine whether triangles are similar using the AA Postulate.
- Solve problems involving similar triangles.

Review Queue

1. a. Find the measures of x and y.
 b. The two triangles are similar. Find w and z.
2. Use the true proportion $\frac{6}{8} = \frac{x}{28} = \frac{27}{y}$ to answer the following questions.
 a. Find x.
 b. Find y.

Know What? George wants to measure the height of a flagpole. He is 6 feet tall and his shadow is 10 feet long. At the same time, the shadow of the flagpole is 85 feet long. How tall is the flagpole?

Angles in Similar Triangles

The Third Angle Theorem says if two angles are congruent to two angles in another triangle the third angles are congruent too. Let’s see what happens when two different triangles have the same angle measures.

Investigation 7-1: Constructing Similar Triangles
Tools Needed: pencil, paper, protractor, ruler

1. Draw a 45° angle. Make the horizontal side 3 inches and draw a 60° angle on the other endpoint.

2. Extend the other sides of the 45° and 60° angles so that they intersect to form a triangle.
Find the measure of the third angle and measure the length of each side.

3. Repeat Steps 1 and 2, but make the horizontal side between the 45° and 60° angle 4 inches.
Find the measure of the third angle and measure the length of each side.

4. Find the ratio of the sides. Put the sides opposite the 45° angles over each other, the sides opposite the 60° angles over each other, and the sides opposite the third angles over each other. What happens?

AA Similarity Postulate: If two angles in one triangle are congruent to two angles in another triangle, the two triangles are similar.

If \(\angle A \cong \angle Y \) and \(\angle B \cong \angle Z \), then \(\triangle ABC \sim \triangle YZX \).

Example 1: Determine if the following two triangles are similar. If so, write the similarity statement.

Solution: \(m\angle G = 48° \) and \(m\angle M = 30° \) So, \(\angle F \cong \angle M, \angle E \cong \angle L \) and \(\angle G \cong \angle N \) and the triangles are similar. \(\triangle FEG \sim \triangle MLN \).

Example 2: Determine if the following two triangles are similar. If so, write the similarity statement.
Solution: $\angle C = 39^\circ$ and $\angle F = 59^\circ$. $\angle C \neq \angle F$, So $\triangle ABC$ and $\triangle DEF$ are not similar.

Example 3: Are the following triangles similar? If so, write the similarity statement.

Solution: Because $\overline{AE} \parallel \overline{CD}$, $\angle A \cong \angle D$ and $\angle C \cong \angle E$ by the Alternate Interior Angles Theorem. By the AA Similarity Postulate, $\triangle ABE \sim \triangle DBC$.

Example 4: $\triangle LEG \sim \triangle MAR$ by AA. Find GE and MR.

Solution: Set up a proportion to find the missing sides.

\[
\frac{24}{32} = \frac{MR}{20} \quad \quad \quad \frac{24}{32} = \frac{21}{GE}
\]

\[
480 = 32MR \quad \quad \quad 24GE = 672
\]

\[
15 = MR \quad \quad \quad GE = 28
\]

When two triangles are similar, the corresponding sides are proportional. But, what are the corresponding sides? Using the triangles from Example 4, we see how the sides line up in the diagram to the right.
7.3. Similarity by AA

Indirect Measurement

An application of similar triangles is to measure lengths *indirectly*. You can use this method to measure the width of a river or canyon or the height of a tall object.

Example 5: A tree outside Ellie’s building casts a 125 foot shadow. At the same time of day, Ellie casts a 5.5 foot shadow. If Ellie is 4 feet 10 inches tall, how tall is the tree?

Solution: Draw a picture. We see that the tree and Ellie are parallel, so the two triangles are similar.

\[
\frac{4\ ft, 10\ in.}{x\ ft} = \frac{5.5\ ft}{125\ ft}
\]

The measurements need to be in the same units. Change everything into inches and then we can cross multiply.

\[
\frac{58\ in.}{x\ ft} = \frac{66\ in.}{1500\ ft}
\]

\[
87000 = 66x
\]

\[
x \approx 1318.18\ in \text{ or } 109.85\ ft
\]

Know What? Revisited It is safe to assume that George and the flagpole stand vertically, making them parallel. This is very similar to Example 4. Set up a proportion.

\[
\frac{10}{85} = \frac{6}{x} \rightarrow 10x = 510
\]

\[
x = 51\ ft. \quad \text{The height of the flagpole is 51 feet.}
\]
Review Questions

- Questions 1-13 are similar to Examples 1-4 and review.
- Question 14 compares the definitions of congruence and similarity.
- Questions 15-23 are similar to Examples 1-3.
- Questions 24-30 are similar to Example 5 and the Know What?

Use the diagram to complete each statement.

1. $\triangle SAM \sim \triangle ____$
2. $\frac{SA}{?-} = \frac{SM}{?-} = \frac{?-}{?-}$
3. $SM = ____$
4. $TR = ____$
5. $\frac{9}{?-} = \frac{?-}{8}$

Answer questions 6-9 about trapezoid $ABCD$.

6. Name two similar triangles. How do you know they are similar?
7. Write a true proportion.
8. Name two other triangles that might not be similar.
9. If $AB = 10, AE = 7, \text{ and } DC = 22$, find AC. Be careful!

Use the triangles below for questions 10-12.

$AB = 20, DE = 15, \text{ and } BC = k$.

10. Are the two triangles similar? How do you know?
11. Write an expression for FE in terms of k.
12. If $FE = 12$, what is k?
13. Fill in the blanks: If an acute angle of a _____ triangle is congruent to an acute angle in another _____ triangle, then the two triangles are _____.
14. Writing How do congruent triangles and similar triangles differ? How are they the same?

Are the following triangles similar? If so, write a similarity statement.
In order to estimate the width of a river, the following technique can be used. Use the diagram below.
Place three markers, O, C, and E on the upper bank of the river. E is on the edge of the river and $OC \perp CE$. Go across the river and place a marker, N so that it is collinear with C and E. Then, walk along the lower bank of the river and place marker A, so that $CN \perp NA$. $OC = 50$ feet, $CE = 30$ feet, $NA = 80$ feet.

24. Is $OC \parallel NA$? How do you know?
25. Is $\triangle OCE \sim \triangle ANE$? How do you know?
26. What is the width of the river? Find EN.
27. Can we find EA? If so, find it. If not, explain.
28. The technique above was used to measure the distance across the Grand Canyon. Using the same set up and marker letters, $OC = 72$ ft, $CE = 65$ ft, and $NA = 14,400$ ft. Find EN (the distance across the Grand Canyon).
29. Cameron is 5 ft tall and casts a 12 ft shadow. At the same time of day, a nearby building casts a 78 ft shadow. How tall is the building?
30. The Empire State Building is 1250 ft. tall. At 3:00, Pablo stands next to the building and has an 8 ft. shadow. If he is 6 ft tall, how long is the Empire State Building’s shadow at 3:00?

Review Queue Answers

a. $x = 52^\circ, y = 80^\circ$
b. $\frac{w}{20} = \frac{15}{25} \quad \frac{15}{25} = \frac{18}{z}$
 $25w = 15(20) \quad 25(18) = 15z$
 $25w = 300 \quad 450 = 15z$
 $w = 12 \quad 30 = z$

a. $168 = 8x \quad 6y = 216$
 $x = 21 \quad y = 36$
b. Answers will vary. One possibility: $\frac{28}{8} = \frac{21}{6}$
c. $28(12) = 8(6 + x)$
 $336 = 48 + 8x$
 $288 = 8x$
 $36 = x$ Because $x \neq 21$, like in part a, this is not a true proportion.
7.4 Similarity by SSS and SAS

Learning Objectives

• Use SSS and SAS to determine whether triangles are similar.
• Apply SSS and SAS to solve real-world situations.

Review Queue

1.
 a. What are the congruent angles? List each pair.

 b. Write the similarity statement.
 c. If $AB = 8$, $BD = 20$, and $BC = 25$, find BE.

2. Solve the following proportions.
 a. $\frac{6}{x} = \frac{21}{x}$
 b. $\frac{x+2}{6} = \frac{2x-1}{15}$

Know What? Recall from Chapter 2, that the game of pool relies heavily on angles. In Section 2.5, we discovered that $m\angle 1 = m\angle 2$.

You decide to hit the cue ball so it follows the yellow path to the right. Are the two triangles similar?

SSS for Similar Triangles

If you do not know any angle measures, can you say two triangles are similar?

Investigation 7-2: SSS Similarity

Tools Needed: ruler, compass, protractor, paper, pencil

1. Using Investigation 4-2, construct a triangle with sides 6 cm, 8 cm, and 10 cm.

2. Construct a second triangle with sides 9 cm, 12 cm, and 15 cm.

3. Using your protractor, measure the angles in both triangles. What do you notice?

4. Line up the corresponding sides. Write down the ratios of these sides. What happens?

To see an animated construction of this, click: http://www.mathsisfun.com/geometry/construct-ruler-compass-1.htm

From #3, you should notice that the angles in the two triangles are equal. Second, the sides are all in the same proportion, \(\frac{6}{9} = \frac{8}{12} = \frac{10}{15} \).

SSS Similarity Theorem: If the corresponding sides of two triangles are proportional, then the two triangles are similar.

\[
\frac{AB}{YZ} = \frac{BC}{ZX} = \frac{AC}{XY}, \text{ then } \triangle ABC \sim \triangle YZX.
\]

Example 1: Determine if any of the triangles below are similar.
Solution: Compare two triangles at a time.

\(\triangle ABC \) and \(\triangle DEF \):

\[
\frac{20}{15} = \frac{22}{16} = \frac{24}{18}
\]

Reduce each fraction to see if they are equal. \(\frac{20}{15} = \frac{4}{3} \), \(\frac{22}{16} = \frac{11}{8} \), and \(\frac{24}{18} = \frac{4}{3} \).

\(\frac{4}{3} \neq \frac{11}{8} \), \(\triangle ABC \) and \(\triangle DEF \) are not similar.

\(\triangle DEF \) and \(\triangle GHI \):

\[
\frac{15}{30} = \frac{16}{33} = \frac{18}{36}
\]

\(\frac{15}{30} = \frac{1}{2}, \frac{16}{33} = \frac{16}{33}, \) and \(\frac{18}{36} = \frac{1}{2} \neq \frac{16}{33}, \triangle DEF \) is not similar to \(\triangle GHI \).

\(\triangle ABC \) and \(\triangle GHI \):

\[
\frac{20}{30} = \frac{22}{33} = \frac{24}{36}
\]

\(\frac{20}{30} = \frac{2}{3}, \frac{22}{33} = \frac{2}{3}, \) and \(\frac{24}{36} = \frac{2}{3} \). All three ratios reduce to \(\frac{2}{3} \), \(\triangle ABC \sim \triangle GHI \).

Example 2: Algebra Connection Find \(x \) and \(y \), such that \(\triangle ABC \sim \triangle DEF \).

Solution: According to the similarity statement, the corresponding sides are: \(\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} \). Substituting in what we know, we have \(\frac{9}{6} = \frac{4x-1}{10} = \frac{18}{y} \).

\[
\frac{9}{6} = \frac{4x-1}{10} \quad \frac{9}{6} = \frac{18}{y}
\]

\[
9(10) = 6(4x-1) \quad 9y = 18(6)
90 = 24x - 6 \quad 9y = 108
96 = 24x \quad y = 12
x = 4
\]

SAS for Similar Triangles

SAS is the last way to show two triangles are similar.

Investigation 7-3: SAS Similarity

Tools Needed: paper, pencil, ruler, protractor, compass

1. Using Investigation 4-3, construct a triangle with sides 6 cm and 4 cm and the included angle is 45°.
2. Repeat Step 1 and construct another triangle with sides 12 cm and 8 cm and the included angle is 45°.

3. Measure the other two angles in both triangles. What do you notice?

4. Measure the third side in each triangle. Make a ratio. Is this ratio the same as the ratios of the sides you were given?

SAS Similarity Theorem: If two sides in one triangle are proportional to two sides in another triangle and the included angle in both are congruent, then the two triangles are similar.

If \(\frac{AB}{XY} = \frac{AC}{XZ} \) and \(\angle A \cong \angle X \), then \(\triangle ABC \sim \triangle XYZ \).

Example 3: Are the two triangles similar? How do you know?

Solution: \(\angle B \cong \angle Z \) because they are both right angles and \(\frac{10}{15} = \frac{24}{36} \). So, \(\frac{AB}{XY} = \frac{BC}{XZ} \) and \(\triangle ABC \sim \triangle XYZ \) by SAS.

Example 4: Are there any similar triangles? How do you know?

386
Solution: $\triangle A$ is shared by $\triangle EAB$ and $\triangle DAC$, so it is congruent to itself. Let’s see if $\frac{AE}{AD} = \frac{AB}{AC}$.

\[
\frac{9}{9+3} = \frac{12}{12+5} = \frac{3}{4} \quad \neq \quad \frac{12}{17}
\]

The two triangles are not similar.

Example 5: From Example 4, what should BC equal for $\triangle EAB \sim \triangle DAC$?

Solution: The proportion we ended up with was $\frac{9}{11} = \frac{3}{4} \neq \frac{12}{17}$. AC needs to equal 16, so that $\frac{12}{16} = \frac{3}{4}$. $AC = AB + BC$ and $16 = 12 + BC$. BC should equal 4.

Know What? Revisited Yes, the two triangles are similar because they both have a right angle and, from early in this text learned that $m\angle 1 = m\angle 2$.

Review Questions

- Questions 1-5 are vocabulary.
- Questions 6-18 are similar to Examples 1, 3, and 4 and review.
- Questions 19-24 are similar to Examples 3 and 4.
- Questions 25-28 are similar to Example 2.
- Questions 29 and 30 are a review of the last section.

Fill in the blanks.

1. Two triangles are similar if two angles in each triangle are _____________.
2. If all three sides in one triangle are ________________ to the three sides in another, then the two triangles are similar.
3. Two triangles are congruent if the corresponding sides are ________________.
4. Two triangles are similar if the corresponding sides are ________________.
5. If two sides in one triangle are ________________ to two sides in another and the ________________ angles are ________________, then the triangles are ________________.

Use the following diagram for questions 6-8. The diagram is to scale.
6. Are the two triangles similar? Explain your answer.
7. Are the two triangles congruent? Explain your answer.
8. What is the scale factor for the two triangles?

Fill in the blanks in the statements below. Use the diagram to the left.

9. $\triangle ABC \sim \triangle _____$
10. $\frac{AB}{?} = \frac{BC}{?} = \frac{AC}{?}$
11. If $\triangle ABC$ had an altitude, $AG = 10$, what would be the length of altitude DH?
12. Find the perimeter of $\triangle ABC$ and $\triangle DEF$. Find the ratio of the perimeters.

Use the diagram to the right for questions 13-18.

13. $\triangle ABC \sim \triangle _____$
14. Why are the two triangles similar?
15. Find ED.
16. $\frac{BD}{?} = \frac{DC}{?} = \frac{DE}{?}$
17. Is $\frac{AD}{AB} = \frac{CE}{EC}$ true?
18. Is $\frac{AD}{AB} = \frac{DE}{BE}$ true?

Determine if the following triangles are similar. If so, write the similarity theorem and statement.
Algebra Connection Find the value of the missing variable(s) that makes the two triangles similar.
29. At a certain time of day, a building casts a 25 ft shadow. At the same time of day, a 6 ft tall stop sign casts a 15 ft shadow. How tall is the building?
30. A child who is 42 inches tall is standing next to the stop sign in #21. How long is her shadow?

Review Queue Answer

1.
 a. $\triangle A \cong \triangle D$, $\triangle E \cong \triangle C$
 b. $\triangle ABE \sim \triangle DBC$
 c. $BE = 10$

2.
 a. $\frac{6}{x} = \frac{21}{3}, x = 28$
 b. $15(x + 2) = 6(2x - 1)$
 $15x + 30 = 12x - 6$
 $3x = -36$
 $x = -12$
Learning Objectives

- Identify proportional segments within triangles.
- Extend triangle proportionality to parallel lines.

Review Queue

1. Write a similarity statement for the two triangles in the diagram. Why are they similar?

![Diagram of two triangles]

2. If \(XA = 16\), \(XY = 18\), \(XB = 32\), find \(XZ\).
3. If \(YZ = 27\), find \(AB\).
4. Find \(AY\) and \(BZ\).

Know What? To the right is a street map of part of Washington DC. \(R\) Street, \(Q\) Street, and \(O\) Street are parallel and \(7^{th}\) Street is perpendicular to all three. All the measurements are given on the map. What are \(x\) and \(y\)?

![Street map with measurements]

Triangle Proportionality

Think about a midsegment of a triangle. A midsegment is parallel to one side of a triangle and divides the other two sides into congruent halves. The midsegment divides those two sides proportionally.

Example 1: A triangle with its midsegment is drawn below. What is the ratio that the midsegment divides the sides into?
7.5. Proportionality Relationships

Solution: The midsegment splits the sides evenly. The ratio would be 8:8 or 10:10, which both reduce to 1:1.

The midsegment divides the two sides of the triangle proportionally, but what about other segments?

Investigation 7-4: Triangle Proportionality

Tools Needed: pencil, paper, ruler
1. Draw \(\triangle ABC \). Label the vertices.
2. Draw \(\overline{XY} \) so that \(X \) is on \(\overline{AB} \) and \(Y \) is on \(\overline{BC} \). \(X \) and \(Y \) can be anywhere on these sides.

3. Is \(\triangle XBY \sim \triangle ABC \)? Why or why not? Measure \(AX, XB, BY, \) and \(YC \). Then set up the ratios \(\frac{AX}{XB} \) and \(\frac{YC}{YB} \). Are they equal?
4. Draw a second triangle, \(\triangle DEF \). Label the vertices.
5. Draw \(\overline{XY} \) so that \(X \) is on \(\overline{DE} \) and \(Y \) is on \(\overline{EF} \) AND \(\overline{XY} \parallel \overline{DF} \).
6. Is \(\triangle XEY \sim \triangle DEF \)? Why or why not? Measure \(DX,XE,EY, \) and \(YF \). Then set up the ratios \(\frac{DX}{XE} \) and \(\frac{FY}{YE} \). Are they equal?

From this investigation, we see that if \(\overline{XY} \parallel \overline{DF} \), then \(\overline{XY} \) divides the sides proportionally.

Triangle Proportionality Theorem: If a line parallel to one side of a triangle intersects the other two sides, then it divides those sides proportionally.
If $DE \parallel AC$, then $\frac{BD}{DA} = \frac{BE}{EC}$. ($\frac{DA}{BD} = \frac{EC}{BE}$ is also a true proportion.)

For the converse:
If $\frac{BD}{DA} = \frac{BE}{EC}$, then $DE \parallel AC$.

Triangle Proportionality Theorem Converse: If a line divides two sides of a triangle proportionally, then it is parallel to the third side.

Proof of the Triangle Proportionality Theorem

Given: $\triangle ABC$ with $DE \parallel AC$
Prove: $\frac{AD}{DB} = \frac{CE}{EB}$

Table 7.2:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $DE \parallel AC$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$</td>
<td>Corresponding Angles Postulate</td>
</tr>
<tr>
<td>3. $\triangle ABC \sim \triangle DBE$</td>
<td>AA Similarity Postulate</td>
</tr>
<tr>
<td>4. $AD + DB = AB, EC + EB = BC$</td>
<td>Segment Addition Postulate</td>
</tr>
<tr>
<td>5. $\frac{AB}{BD} = \frac{BC}{BE}$</td>
<td>Corresponding sides in similar triangles are proportional</td>
</tr>
<tr>
<td>6. $\frac{AD + DB}{BD} = \frac{EC + EB}{BE}$</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>7. $\frac{AD}{BD} + 1 = \frac{EC}{BE} + \frac{BE}{BE}$</td>
<td>Separate the fractions</td>
</tr>
<tr>
<td>8. $\frac{AD}{BD} + 1 = \frac{EC}{BE} + 1$</td>
<td>Substitution PoE (something over itself always equals 1)</td>
</tr>
<tr>
<td>9. $\frac{AD}{BD} = \frac{EC}{BE}$</td>
<td>Subtraction PoE</td>
</tr>
</tbody>
</table>

We will not prove the converse; it is basically this proof but in the reverse order.

Example 2: In the diagram below, $EB \parallel BD$. Find BC.
7.5. Proportionality Relationships

Solution: Set up a proportion.

\[
\frac{10}{15} = \frac{BC}{12} \rightarrow 15(BC) = 120
\]

\[BC = 8\]

Example 3: Is $DE \parallel CB$?

Solution: If the ratios are equal, then the lines are parallel.

\[
\frac{6}{18} = \frac{8}{24} = \frac{1}{3}
\]

Because the ratios are equal, $DE \parallel CB$.

Parallel Lines and Transversals

We can extend the Triangle Proportionality Theorem to multiple parallel lines.

Theorem 7-7: If three parallel lines are cut by two transversals, then they divide the transversals proportionally.

If $l \parallel m \parallel n$, then \(\frac{a}{b} = \frac{c}{d}\) or \(\frac{a}{c} = \frac{b}{d}\).

Example 4: Find a.

394
Solution: The three lines are marked parallel, set up a proportion.

\[
\frac{a}{20} = \frac{9}{15}
\]

\[180 = 15a\]

\[a = 12\]

Example 5: Find \(b\).

Solution: Set up a proportion.

\[
\frac{12}{9.6} = \frac{b}{24}
\]

\[288 = 9.6b\]

\[b = 30\]

Example 6: Algebra Connection Find the value of \(x\) that makes the lines parallel.
7.5. Proportionality Relationships

Solution: Set up a proportion and solve for x.

$$\frac{5}{8} = \frac{3.75}{2x - 4} \rightarrow 5(2x - 4) = 8(3.75)$$

$$10x - 20 = 30$$

$$10x = 50$$

$$x = 5$$

Theorem 7-7 can be expanded to any number of parallel lines with any number of transversals. When this happens all corresponding segments of the transversals are proportional.

Example 7: Find a, b, and c.

Solution: Line up the segments that are opposite each other.

$$\frac{a}{9} = \frac{2}{3}$$

$$3a = 18$$

$$a = 6$$

$$\frac{2}{3} = \frac{b}{4}$$

$$2b = 12$$

$$b = 6$$

$$\frac{2}{3} = \frac{c}{9}$$

$$2c = 9$$

$$c = 4.5$$

Proportions with Angle Bisectors

The last proportional relationship we will explore is how an angle bisector intersects the opposite side of a triangle.

Theorem 7-8: If a ray bisects an angle of a triangle, then it divides the opposite side into segments that are proportional to the lengths of the other two sides.
If $\triangle BAC \cong \triangle CAD$, then $\frac{BC}{CD} = \frac{AB}{AD}$.

Example 8: Find x.

![Triangle diagram]

Solution: The ray is the angle bisector and it splits the opposite side in the same ratio as the sides. The proportion is:

\[
\frac{9}{x} = \frac{21}{14}
\]

\[
21x = 126
\]

\[
x = 6
\]

Example 9: Algebra Connection Find the value of x that would make the proportion true.

![Triangle diagram]

Solution: You can set up this proportion like the previous example.

\[
\frac{5}{3} = \frac{4x + 1}{15}
\]

\[
75 = 3(4x + 1)
\]

\[
75 = 12x + 3
\]

\[
72 = 12x
\]

\[
x = 6
\]

Know What? Revisited To find x and y, you need to set up a proportion using parallel the parallel lines.

\[
\frac{2640}{x} = \frac{1320}{2380} = \frac{1980}{y}
\]

From this, $x = 4760\ ft$ and $y = 3570\ ft$.

Review Questions

- Questions 1-12 are similar to Examples 1 and 2 and review.
- Questions 13-18 are similar to Example 3.
- Questions 19-24 are similar to Examples 8 and 9.
- Questions 25-30 are similar to Examples 4-7.

Use the diagram to answer questions 1-5. $\overline{DB} \parallel \overline{FE}$.

1. Name the similar triangles. Write the similarity statement.
2. $\frac{BE}{EC} = \frac{?}{?}$
3. $\frac{CF}{EC} = \frac{?}{?}$
4. $\frac{DF}{EC} = \frac{?}{?}$
5. $\frac{FC+?}{FC} = \frac{?}{FE}$

Use the diagram to answer questions 6-12. $\overline{AB} \parallel \overline{DE}$.

6. Find BD.
7. Find DC.
8. Find DE.
10. What is $BD : DC$?
11. What is $DC : BC$?
12. Why $BD : DC \neq DC : BC$?

Use the given lengths to determine if $\overline{AB} \parallel \overline{DE}$.
Algebra Connection Find the value of the missing variable(s).
Find the value of each variable in the pictures below.
Review Queue Answers

1. $\triangle AXB \sim \triangle XYZ$ by AA Similarity Postulate
2. $\frac{16}{18} = \frac{32}{x} \Rightarrow XZ = 36$
3. $\frac{16}{18} = \frac{AB}{27} \Rightarrow AB = 24$
4. $AY = 18 - 16 = 2, BZ = 36 - 32 = 4$
7.6 Similarity Transformations

Learning Objectives

- Draw a dilation of a given figure.
- Plot an image when given the center of dilation and scale factor.
- Determine if one figure is the dilation of another.

Review Queue

1. Are the two quadrilaterals similar? How do you know?

![Diagram of two quadrilaterals with measurements]

2. What is the scale factor from \(XYZW \) to \(CDAB \)? Leave as a fraction.

Know What? One practical application of dilations is perspective drawings. These drawings use a vanishing point (the point where the road meets the horizon) to trick the eye into thinking the picture is three-dimensional. The picture to the right is called a one-point perspective. They are typically used to draw streets, train tracks, or anything that is linear.

![Perspective drawing]

Your task for this Know What? is to draw your own perspective drawing with one vanishing point and at least 4 objects (buildings, cars, sidewalk, train tracks, etc).
Dilations

A dilation makes a figure larger or smaller and has the same shape as the original.

Dilation: An enlargement or reduction of a figure that preserves size but not shape. All dilations are similar to the original figure.

Dilations have a **center** and a **scale factor**. The center is the point of reference for the dilation and scale factor tells us how much the figure stretches or shrinks. A scale factor is labeled \(k \) and **always greater than zero**. A dilation, or copy, is always followed by \(a' \).

Table 7.3:

<table>
<thead>
<tr>
<th>Label It</th>
<th>Say It</th>
</tr>
</thead>
<tbody>
<tr>
<td>'</td>
<td>“prime” (copy of the original)</td>
</tr>
<tr>
<td>(A')</td>
<td>“a prime” (copy of point (A))</td>
</tr>
<tr>
<td>(A'')</td>
<td>“a double prime” (second copy)</td>
</tr>
</tbody>
</table>

Example 1: The center of dilation is \(P \) and the scale factor is 3.

Find \(Q' \).

![Diagram showing a dilation with center \(P \) and scale factor 3, leading to \(Q' \) being 18 units away from \(P \).]

Solution: If the scale factor is 3 and \(Q \) is 6 units away from \(P \), then \(Q' \) is going to be \(6 \times 3 = 18 \) units away from \(P \). The dilation will be on the same line as the original and center.

Example 2: Using the picture above, change the scale factor to \(\frac{1}{3} \).

Find \(Q'' \).
Solution: The scale factor is \(\frac{1}{3} \), so \(Q'' \) is going to be \(6 \times \frac{1}{3} = 2 \) units away from \(P \). \(Q'' \) will also be collinear with \(Q \) and center.

Example 3: \(KLMN \) is a rectangle. If the center of dilation is \(K \) and \(k = 2 \), draw \(K'L'M'N' \).

Solution: If \(K \) is the center of dilation, then \(K \) and \(K' \) will be the same point. From there, \(L' \) will be 8 units above \(L \) and \(N' \) will be 12 units to the right of \(N \).

Example 4: Find the perimeters of \(KLMN \) and \(K'L'M'N' \). Compare this ratio to the scale factor.

Solution: The perimeter of \(KLMN = 12 + 8 + 12 + 8 = 40 \). The perimeter of \(K'L'M'N' = 24 + 16 + 24 + 16 = 80 \). The ratio is 80:40, which reduces to 2:1, which is the same as the scale factor.

Example 5: \(\triangle ABC \) is a dilation of \(\triangle DEF \). If \(P \) is the center of dilation, what is the scale factor?

Solution: Because \(\triangle ABC \) is a dilation of \(\triangle DEF \), then \(\triangle ABC \sim \triangle DEF \). The scale factor is the ratio of the sides. Since \(\triangle ABC \) is smaller than the original, \(\triangle DEF \), the scale factor is going to be less than one, \(\frac{12}{20} = \frac{3}{5} \).
If $\triangle DEF$ was the dilated image, the scale factor would have been $\frac{5}{3}$.

If the dilated image is smaller than the original, then $0 < k < 1$.

If the dilated image is larger than the original, then $k > 1$.

Dilations in the Coordinate Plane

In this text, the center of dilation will always be the origin.

Example 6: Quadrilateral $EFGH$ has vertices $E(-4, -2), F(1, 4), G(6, 2)$ and $H(0, -4)$. Draw the dilation with a scale factor of 1.5.

![Graph showing the original and dilated quadrilateral]

Solution: To dilate something in the coordinate plane, multiply each coordinate by the scale factor. This is called *mapping*.

For any dilation the mapping will be $(x, y) \rightarrow (kx, ky)$.

For this dilation, the mapping will be $(x, y) \rightarrow (1.5x, 1.5y)$.

\[
\begin{align*}
E(-4, -2) &\rightarrow (1.5(-4), 1.5(-2)) \rightarrow E'(6, -3) \\
F(1, 4) &\rightarrow (1.5(1), 1.5(4)) \rightarrow F'(1.5, 6) \\
G(6, 2) &\rightarrow (1.5(6), 1.5(2)) \rightarrow G'(9, 3) \\
H(0, -4) &\rightarrow (1.5(0), 1.5(-4)) \rightarrow H'(0, -6)
\end{align*}
\]

In the graph above, the blue quadrilateral is the original and the red image is the dilation.

Example 7: Determine the coordinates of $\triangle ABC$ and $\triangle A'B'C'$ and find the scale factor.
Solution: The coordinates of $\triangle ABC$ are $A(2, 1)$, $B(5, 1)$ and $C(3, 6)$. The coordinates of $\triangle A'B'C'$ are $A'(6, 3)$, $B'(15, 3)$ and $C'(9, 18)$. Each of the corresponding coordinates are three times the original, so $k = 3$.

Example 8: Show that dilations preserve shape by using the distance formula. Find the lengths of the sides of both triangles in Example 7.

Solution:

\[
\begin{align*}
\triangle ABC & \\
AB &= \sqrt{(2-5)^2 + (1-1)^2} = \sqrt{9} = 3 \\
AC &= \sqrt{(2-3)^2 + (1-6)^2} = \sqrt{26} \\
CB &= \sqrt{(3-5)^2 + (6-1)^2} = \sqrt{29} \\
\end{align*}
\]

\[
\begin{align*}
\triangle A'B'C' & \\
A'B' &= \sqrt{(6-15)^2 + (3-3)^2} = \sqrt{81} = 9 \\
A'C' &= \sqrt{(6-9)^2 + (3-18)^2} = \sqrt{234} = 3\sqrt{26} \\
C'B' &= \sqrt{(9-15)^2 + (18-3)^2} = \sqrt{261} = 3\sqrt{29} \\
\end{align*}
\]

From this, we also see that all the sides of $\triangle A'B'C'$ are three times larger than $\triangle ABC$.

Know What? Revisited Answers to this project will vary depending on what you decide to draw. Make sure that you have at least four objects of detail. If you are having trouble getting started, go to the website: http://www.drawing-and-painting-techniques.com/drawing-perspective.html

Review Questions

- Questions 1-6 are similar to Examples 1 and 2.
- Questions 7-10 are similar to Example 3.
- Questions 11-18 are similar to Example 5.
- Questions 19-24 are similar to Examples 6 and 7.
- Questions 25-30 are similar to Example 8.

Given A and the scale factor, determine the coordinates of the dilated point, A'. You may assume the center of dilation is the origin.

1. $A(3, 9), k = \frac{2}{3}$
2. \(A(-4, 6), k = 2\)
3. \(A(9, -13), k = \frac{1}{2}\)

Given \(A\) and \(A'\), find the scale factor. You may assume the center of dilation is the origin.

4. \(A(8, 2), A'(12, 3)\)
5. \(A(-5, -9), A'(-45, -81)\)
6. \(A(22, -7), A(11, -3.5)\)

For the given shapes, draw the dilation, given the scale factor and center.

7. \(k = 3.5\), center is \(A\)

8. \(k = 2\), center is \(D\)

9. \(k = \frac{3}{4}\), center is \(A\)

10. \(k = \frac{2}{5}\), center is \(A\)
In the four questions below, you are told the scale factor. Determine the dimensions of the dilation. In each diagram, the black figure is the original and P is the center of dilation.

11. $k = 4$

12. $k = \frac{1}{3}$

13. $k = 2.5$

14. $k = \frac{1}{4}$

In the four questions below, find the scale factor, given the corresponding sides. In each diagram, the black figure is the original and P is the center of dilation.
The origin is the center of dilation. Draw the dilation of each figure, given the scale factor.

19. \(A(2, 4), B(-3, 7), C(-1, -2); k = 3\)
20. \(A(12, 8), B(-4, -16), C(0, 10); k = \frac{3}{4}\)

Multi-Step Problem Questions 21-24 build upon each other.

21. Plot \(A(1, 2), B(12, 4), C(10, 10)\). Connect to form a triangle.
22. Make the origin the center of dilation. Draw 4 rays from the origin to each point from #21. Then, plot \(A'(2, 4), B'(24, 8), C'(20, 20)\). What is the scale factor?
23. Use \(k = 4\), to find \(A''B''C''\). Plot these points.
24. What is the scale factor from \(A'B'C'\) to \(A''B''C''\)\

If \(O\) is the origin, find the following lengths (using 21-24 above). Round all answers to the nearest hundredth.

25. \(OA\)
26. \(AA'\)
27. \(AA''\)
28. \(OA'\)
29. \(OA''\)
30. AB
31. $A'B'$
32. $A''B''$
33. Compare the ratios $OA : OA'$ and $AB : A'B'$. What do you notice? Why do you think that is?
34. Compare the ratios $OA : OA''$ and $AB : A''B''$. What do you notice? Why do you think that is?

Review Queue Answers

1. Yes, all the angles are congruent and the corresponding sides are in the same ratio.
2. $\frac{5}{3}$
3. Yes, $LMNO \sim EFGH$ because $LMNO$ is exactly half of $EFGH$.
Learning Objectives

- Understand basic fractals.

Self-Similar: When one part of an object can be enlarged (or shrunk) to look like the whole object.

To explore self-similarity, we will go through some examples. Typically, each step of repetition is called an *iteration*. The first level is called **Stage 0**.

Sierpinski Triangle

The Sierpinski triangle iterates a triangle by connecting the midpoints of the sides and shading the central triangle (Stage 1). Repeat this process for the unshaded triangles in Stage 1 to get Stage 2.

Example 1:
Determine the number of shaded and unshaded triangles in each stage of the Sierpinski triangles. Determine if there is a pattern.

Solution:

<table>
<thead>
<tr>
<th>Stage 0</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unshaded</td>
<td>1</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Shaded</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

The unshaded triangles seem to be powers of $3, 3^0, 3^1, 3^2, 3^3, \ldots$. The shaded triangles are add the previous number of unshaded triangles to the total. For Example, Stage 4 would equal $9 + 13$ shaded triangles.

Fractals

A fractal is another self-similar object that is repeated at smaller scales. Below are the first three stages of the Koch snowflake.
Example 2: Determine the number of edges and the perimeter of each snowflake.

Table 7.5:

<table>
<thead>
<tr>
<th>Number of Edges</th>
<th>Stage 0</th>
<th>Stage 1</th>
<th>Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Length</td>
<td>1</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{9}$</td>
</tr>
<tr>
<td>Perimeter</td>
<td>3</td>
<td>4</td>
<td>$\frac{48}{9} = 5.3$</td>
</tr>
</tbody>
</table>

The Cantor Set

The Cantor set is another fractal that consists of dividing a segment into thirds and then erasing the middle third.

![Cantor Set Diagram](image)

Review Questions

1. Draw Stage 4 of the Cantor set.
2. Use the Cantor Set to fill in the table below.

Table 7.6:

<table>
<thead>
<tr>
<th>Stage 0</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
<th>Stage 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Segments</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Length of each Segment</td>
<td>1</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{9}$</td>
<td>$\frac{1}{27}$</td>
<td>$\frac{1}{81}$</td>
</tr>
<tr>
<td>Total Length of the Segments</td>
<td>1</td>
<td>$\frac{2}{3}$</td>
<td>$\frac{4}{9}$</td>
<td>$\frac{8}{27}$</td>
<td>$\frac{16}{81}$</td>
</tr>
</tbody>
</table>

3. How many segments are in Stage n?
4. Draw Stage 3 of the Koch snowflake.
5. A variation on the Sierpinski triangle is the Sierpinski carpet, which splits a square into 9 equal squares, coloring the middle one only. Then, split the uncolored squares to get the next stage. Draw the first 3 stages of this fractal.
6. How many colored vs. uncolored square are in each stage?

7. Fractals are very common in nature. For example, a fern leaf is a fractal. As the leaves get closer to the end, they get smaller and smaller. Find three other examples of fractals in nature.
Keywords and Theorems

Rations Proportions
- Ratio
- Proportion
- Means
- Extremes
- Cross-Multiplication Theorem
- Corollary
- Corollary 7-1
- Corollary 7-2
- Corollary 7-3
- Corollary 7-4
- Corollary 7-5

Similar Polygons
- Similar Polygons
- Scale Factor
- Theorem 7-2

Similarity by AA
- AA Similarity Postulate
- Indirect Measurement

Similarity by SSS and SAS
- SSS Similarity Theorem
- SAS Similarity Theorem

Proportionality Relationships
- Triangle Proportionality Theorem
- Triangle Proportionality Theorem Converse
- Theorem 7-7
- Theorem 7-8

Dilations
- Dilation

Self-Similarity
- Self-Similar
- Fractal
Review Questions

1. Solve the following proportions.

 a. \(\frac{x+3}{3} = \frac{10}{2} \)

 b. \(\frac{8}{5} = \frac{2x-1}{x+3} \)

2. The extended ratio of the angle in a triangle are 5:6:7. What is the measure of each angle?

3. Rewrite 15 quarts in terms of gallons.

Determine if the following pairs of polygons are similar. If it is two triangles, write why they are similar.
10. Draw a dilation of $A(7, 2), B(4, 9)$, and $C(-1, 4)$ with $k = \frac{3}{2}$.

Algebra Connection Find the value of the missing variable(s).

Texas Instruments Resources

In the CK-12 Texas Instruments Geometry FlexBook® resource, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9692.
Keywords: Define, write theorems, and/or draw a diagram for each word below.

1st Section: Ratios Proportions
Ratio
Proportion
Means
Extremes
Cross-Multiplication Theorem
Corollary
Corollary 7-1
Corollary 7-2
Corollary 7-3
Corollary 7-4
Corollary 7-5

Homework:

2nd Section: Similar Polygons
Similar Polygons
Scale Factor
Theorem 7-2

Homework:

3rd Section: Similarity by AA
AA Similarity Postulate
Indirect Measurement
Homework:

4th Section: Similarity by SSS and SAS

SSS Similarity Theorem

\[
\begin{array}{c}
\text{A} \\
\text{B} \\
\text{C}
\end{array}
\quad
\begin{array}{c}
\text{X} \\
\text{Y} \\
\text{Z}
\end{array}
\]

SAS Similarity Theorem

Homework:

5th Section: Proportionality Relationships

Triangle Proportionality Theorem

\[
\begin{array}{c}
\text{A} \\
\text{B} \\
\text{D} \\
\text{C}
\end{array}
\quad
\begin{array}{c}
\text{D} \\
\text{E} \\
\text{C}
\end{array}
\]

Triangle Proportionality Theorem Converse

Theorem 7-7

\[
\begin{array}{c}
a \\
b \\
c \\
d \\
e \\
f
\end{array}
\quad
\begin{array}{c}
l \\
m \\
n \\
\end{array}
\]

Theorem 7-8
Homework:

6th Section: Dilations

Dilation

Homework:

Extension: Self-Similarity

Self-Similar

Fractal

Homework:
Chapter 8 takes a look at right triangles. A right triangle is a triangle with exactly one right angle. In this chapter, we will prove the Pythagorean Theorem and its converse. Then, we will discuss trigonometry ratios and inverse ratios.
8.1 The Pythagorean Theorem

Learning Objectives

- Review simplifying and reducing radicals.
- Prove and use the Pythagorean Theorem.
- Use the Pythagorean Theorem to derive the distance formula.

Review Queue

1. Draw a right scalene triangle.
2. Draw an isosceles right triangle.
3. List all the factors of 75.
4. Write the prime factorization of 75.

Know What? For a 52” TV, 52” is the length of the diagonal. High Definition Televisions (HDTVs) have sides in a ratio of 16:9. What are the length and width of a 52” HDTV?

Simplifying and Reducing Radicals

In algebra, you learned how to simplify radicals. Let’s review it here.

Example 1: Simplify the radical.

a) $\sqrt{50}$

b) $\sqrt{27}$

c) $\sqrt{272}$

Solution: For each radical, find the square number(s) that are factors.

a) $\sqrt{50} = \sqrt{25 \cdot 2} = 5 \sqrt{2}$

b) $\sqrt{27} = \sqrt{9 \cdot 3} = 3 \sqrt{3}$

c) $\sqrt{272} = \sqrt{16 \cdot 17} = 4 \sqrt{17}$

422
When adding radicals, you can only combine radicals with the same number underneath it. For example, $2\sqrt{5} + 3\sqrt{6}$ cannot be combined, because 5 and 6 are not the same number.

Example 2: Simplify the radicals.

a) $2\sqrt{10} + \sqrt{160}$
b) $5\sqrt{6} \cdot 4\sqrt{18}$
c) $\sqrt{8} \cdot 12\sqrt{2}$
d) $\left(5\sqrt{2}\right)^2$

Solution:
a) Simplify $\sqrt{160}$ before adding: $2\sqrt{10} + \sqrt{160} = 2\sqrt{10} + \sqrt{16 \cdot 10} = 2\sqrt{10} + 4\sqrt{10} = 6\sqrt{10}$
b) To multiply two radicals, multiply what is under the radicals and what is in front.
$5\sqrt{6} \cdot 4\sqrt{18} = 5 \cdot 4 \sqrt{6 \cdot 18} = 20\sqrt{108} = 20\sqrt{36 \cdot 3} = 20 \cdot 6 \sqrt{3} = 120\sqrt{3}$
c) $\sqrt{8} \cdot 12\sqrt{2} = 12 \sqrt{8 \cdot 2} = 12 \sqrt{16} = 12 \cdot 4 = 48$
d) $\left(5\sqrt{2}\right)^2 = 5^2 \left(\sqrt{2}\right)^2 = 25 \cdot 2 = 50 \rightarrow \sqrt{\text{ and the } 2 \text{ cancel each other out}}$

Lastly, to divide radicals, you need to simplify the denominator, which means multiplying the top and bottom of the fraction by the radical in the denominator.

Example 3: Divide and simplify the radicals.

a) $4\sqrt{6} \div \sqrt{3}$
b) $\frac{\sqrt{30}}{\sqrt{8}}$
c) $\frac{8\sqrt{2}}{6\sqrt{7}}$

Solution: Rewrite all division problems like a fraction.

a) $4\sqrt{6} \div \sqrt{3} = \frac{4\sqrt{6}}{\sqrt{3}} = \frac{4\sqrt{6}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{4\sqrt{18}}{3} = \frac{4 \cdot 3\sqrt{2}}{3} = 4\sqrt{2}$

like multiplying by $1, \frac{\sqrt{3}}{\sqrt{3}}$ does not change the value of the fraction

b) $\frac{\sqrt{30}}{\sqrt{8}} \cdot \frac{\sqrt{8}}{\sqrt{8}} = \frac{\sqrt{240}}{\sqrt{64}} = \frac{\sqrt{16 \cdot 15}}{8} = \frac{4\sqrt{15}}{8} = \frac{\sqrt{15}}{2}$

c) $\frac{8\sqrt{2}}{6\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}} = \frac{8\sqrt{14}}{6 \cdot 7} = \frac{4\sqrt{14}}{3 \cdot 7} = \frac{4\sqrt{14}}{21}$

Notice, we do not really “divide” radicals, but get them out of the denominator of a fraction.

The Pythagorean Theorem

We have used the Pythagorean Theorem already in this text, but have not proved it. Recall that the sides of a right triangle are the **legs** (the sides of the right angle) and the **hypotenuse** (the side opposite the right angle). For the Pythagorean Theorem, the legs are “a” and “b” and the hypotenuse is “c”.
8.1. The Pythagorean Theorem

Pythagorean Theorem: Given a right triangle with legs of lengths \(a \) and \(b \) and a hypotenuse of length \(c \), then
\[a^2 + b^2 = c^2. \]

Investigation 8-1: Proof of the Pythagorean Theorem

Tools Needed: pencil, 2 pieces of graph paper, ruler, scissors, colored pencils (optional)

1. On the graph paper, draw a 3 in. square, a 4 in. square, a 5 in. square and a right triangle with legs of 3 in. and 4 in.
2. Cut out the triangle and square and arrange them like the picture on the right.
3. This theorem relies on area. Recall that the area of a square is \(\text{side}^2 \). In this case, we have three squares with sides 3 in., 4 in., and 5 in. What is the area of each square?
4. Now, we know that \(9 + 16 = 25 \), or \(3^2 + 4^2 = 5^2 \). Cut the smaller squares to fit into the larger square, thus proving the areas are equal.

For two more proofs, go to: http://www.mathsisfun.com/pythagoras.html and scroll down to “And You Can Prove the Theorem Yourself.”

Using the Pythagorean Theorem

Here are several examples of the Pythagorean Theorem in action.

Example 4: Do 6, 7, and 8 make the sides of a right triangle?
Solution: Plug in the three numbers to the Pythagorean Theorem. The largest length will always be the hypotenuse. If $6^2 + 7^2 = 8^2$, then they are the sides of a right triangle.

$$6^2 + 7^2 = 36 + 49 = 85$$
$$8^2 = 64$$
$$85 \neq 64$$, so the lengths are not the sides of a right triangle.

Example 5: Find the length of the hypotenuse.

![Right triangle with sides 8 and 15](image)

Solution: Use the Pythagorean Theorem. Set $a = 8$ and $b = 15$. Solve for c.

$$8^2 + 15^2 = c^2$$
$$64 + 225 = c^2$$
$$289 = c^2$$
$$c = \sqrt{289} = \sqrt{17^2} = 17$$

When you take the square root of an equation, the answer is 17 or -17. Length is never negative, which makes 17 the answer.

Example 6: Find the missing side of the right triangle below.

![Right triangle with sides 14 and 7](image)

Solution: Here, we are given the hypotenuse and a leg. Let’s solve for b.

$$7^2 + b^2 = 14^2$$
$$49 + b^2 = 196$$
$$b^2 = 147$$
$$b = \sqrt{147} = \sqrt{49 \cdot 3} = 7 \sqrt{3}$$

Example 7: What is the diagonal of a rectangle with sides 10 and 16?
8.1. The Pythagorean Theorem

Solution: For any square and rectangle, you can use the Pythagorean Theorem to find the length of a diagonal. Plug in the sides to find d.

\[
10^2 + 16^2 = d^2 \\
100 + 256 = d^2 \\
356 = d^2 \\
\sqrt{356} = 2\sqrt{89} \approx 18.87
\]

Pythagorean Triples

In Example 5, the sides of the triangle were 8, 15, and 17. This combination of numbers is called a Pythagorean triple.

Pythagorean Triple: A set of three whole numbers that makes the Pythagorean Theorem true.

\[
3, 4, 5 \quad 5, 12, 13 \quad 7, 24, 25 \quad 8, 15, 17 \quad 9, 12, 15 \quad 10, 24, 26
\]

Any multiple of a Pythagorean triple is also considered a triple because it would still be three whole numbers. Multiplying 3, 4, 5 by 2 gives 6, 8, 10, which is another triple. To see if a set of numbers makes a triple, plug them into the Pythagorean Theorem.

Example 8: Is 20, 21, 29 a Pythagorean triple?

Solution: If $20^2 + 21^2 = 29^2$, then the set is a Pythagorean triple.

\[
20^2 + 21^2 = 400 + 441 = 841 \\
29^2 = 841
\]

Therefore, 20, 21, and 29 is a Pythagorean triple.

Height of an Isosceles Triangle

One way to use The Pythagorean Theorem is to find the height of an isosceles triangle.
Example 9: What is the height of the isosceles triangle?

Solution: Draw the altitude from the vertex between the congruent sides, which bisect the base.

\[
7^2 + h^2 = 9^2 \\
49 + h^2 = 81 \\
h^2 = 32 \\
h = \sqrt{32} = \sqrt{16 \cdot 2} = 4 \sqrt{2}
\]

The Distance Formula

Another application of the Pythagorean Theorem is the Distance Formula. We will prove it here.
Let’s start with point \(A(x_1, y_1) \) and point \(B(x_2, y_2) \), to the left. We will call the distance between \(A \) and \(B, d \).

Draw the vertical and horizontal lengths to make a right triangle.

Now that we have a right triangle, we can use the Pythagorean Theorem to find the hypotenuse, \(d \).

\[
d^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2
\]

\[
d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}
\]

Distance Formula: The distance \(A(x_1, y_1) \) and \(B(x_2, y_2) \) is \(d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \).

Example 10: Find the distance between \((1, 5) \) and \((5, 2) \).

Solution: Make \(A(1, 5) \) and \(B(5, 2) \). Plug into the distance formula.

\[
d = \sqrt{(1 - 5)^2 + (5 - 2)^2}
\]

\[
= \sqrt{(-4)^2 + (3)^2}
\]

\[
= \sqrt{16 + 9} = \sqrt{25} = 5
\]

Just like the lengths of the sides of a triangle, distances are always positive.

Know What? Revisited To find the length and width of a 52” HDTV, plug in the ratios and 52 into the Pythagorean Theorem. We know that the sides are going to be a multiple of 16 and 9, which we will call \(n \).

\[
(16n)^2 + (9n)^2 = 52^2
\]

\[
256n^2 + 81n^2 = 2704
\]

\[
337n^2 = 2704
\]

\[
n^2 = 8.024
\]

\[
n = 2.83
\]
The dimensions of the TV are $16(2.83') \times 9(2.83')$, or $45.3'' \times 25.5''$.

Review Questions

- Questions 1-9 are similar to Examples 1-3.
- Questions 10-15 are similar to Example 5 and 6.
- Questions 16-19 are similar to Example 7.
- Questions 20-25 are similar to Example 8.
- Questions 26-28 are similar to Example 9.
- Questions 29-31 are similar to Example 10.
- Questions 32 and 33 are similar to the Know What?
- Question 34 and 35 are a challenge and similar to Example 9.

Simplify the radicals.

1. $2 \sqrt{5} + \sqrt{20}$
2. $\sqrt{24}$
3. $(6 \sqrt{3})^2$
4. $8 \sqrt{8} \cdot \sqrt{10}$
5. $(2 \sqrt{30})^2$
6. $\sqrt{320}$
7. $\frac{4 \sqrt{5}}{\sqrt{6}}$
8. $\frac{12}{\sqrt{10}}$
9. $\frac{21 \sqrt{5}}{9 \sqrt{15}}$

Find the length of the missing side. Simplify all radicals.
16. If the legs of a right triangle are 10 and 24, then the hypotenuse is ________.
17. If the sides of a rectangle are 12 and 15, then the diagonal is ____________.
18. If the sides of a square are 16, then the diagonal is ____________.
19. If the sides of a square are 9, then the diagonal is ____________.

Determine if the following sets of numbers are Pythagorean Triples.

20. 12, 35, 37
21. 9, 17, 18
22. 10, 15, 21
23. 11, 60, 61
24. 15, 20, 25
25. 18, 73, 75

Find the height of each isosceles triangle below. Simplify all radicals.
Find the length between each pair of points.

29. (-1, 6) and (7, 2)
30. (10, -3) and (-12, -6)
31. (1, 3) and (-8, 16)
32. What are the length and width of a 42” HDTV? Round your answer to the nearest tenth.
33. Standard definition TVs have a length and width ratio of 4:3. What are the length and width of a 42” Standard definition TV? Round your answer to the nearest tenth.
34. **Challenge** An equilateral triangle is an isosceles triangle. If all the sides of an equilateral triangle are 8, find the height. Leave your answer in simplest radical form.

35. If the sides are length s, what would the height be?

Review Queue Answers

3. Factors of 75: 1, 3, 5, 15, 25, 75
4. Prime Factorization of 75: $3 \cdot 5 \cdot 5$
8.2 Converse of the Pythagorean Theorem

Learning Objectives

- Understand the converse of the Pythagorean Theorem.
- Determine if a triangle is acute or obtuse from side measures.

Review Queue

1. Determine if the following sets of numbers are Pythagorean triples.
 a. 14, 48, 50
 b. 9, 40, 41
 c. 12, 43, 44
 d. 12, 35, 37

2. Simplify the radicals.
 a. \((5 \sqrt{12})^2 \)
 b. \(\frac{14}{\sqrt{2}} \)
 c. \(\frac{18}{\sqrt{3}} \)

Know What? A friend of yours is designing a building and wants it to be rectangular. One wall 65 ft. long and the other is 72 ft. long. How can he ensure the walls are going to be perpendicular?

Converse of the Pythagorean Theorem

Pythagorean Theorem Converse: If the square of the longest side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.

If \(a^2 + b^2 = c^2 \), then \(\triangle ABC \) is a right triangle.
With this converse, you can use the Pythagorean Theorem to prove that a triangle is a right triangle, even if you do not know any angle measures.

Example 1: Determine if the triangles below are right triangles.

a)

![Image of a triangle with sides 8, 16, and 8√5]

Solution: Check to see if the three lengths satisfy the Pythagorean Theorem. Let the longest side represent \(c \).

\[
8^2 + 16^2 = (8\sqrt{5})^2
\]

\[
64 + 256 = 64 \cdot 5
\]

\[
320 = 320 \quad \text{Yes}
\]

b)

![Image of a triangle with sides 24, 22, and 26]

Solution: Check to see if the three lengths satisfy the Pythagorean Theorem. Let the longest side represent \(c \).

\[
22^2 + 24^2 = 26^2
\]

\[
484 + 576 = 676
\]

\[
1060 \neq 676 \quad \text{No}
\]

Example 2: Do the following lengths make a right triangle?

a) \(\sqrt{5}, 3, \sqrt{14} \)

b) \(6, 2\sqrt{3}, 8 \)

c) \(3\sqrt{2}, 4\sqrt{2}, 5\sqrt{2} \)

Solution: Even though there is no picture, you can still use the Pythagorean Theorem. Again, the longest length will be \(c \).
8.2. Converse of the Pythagorean Theorem

\[(\sqrt{5})^2 + 3^2 = \sqrt{14}^2 \]
5 + 9 = 14
Yes

b) \[6^2 + (2\sqrt{3})^2 = 8^2 \]
36 + (4 \cdot 3) = 64
36 + 12 \neq 64

c) This is a multiple of \(\sqrt{2} \) of a 3, 4, 5 right triangle. Yes, this is a right triangle.

Identifying Acute and Obtuse Triangles

We can extend the converse of the Pythagorean Theorem to determine if a triangle is an obtuse or acute triangle.

Theorem 8-3: If the sum of the squares of the two shorter sides in a right triangle is greater than the square of the longest side, then the triangle is acute.

\[b < c \text{ and } a < c \]
If \(a^2 + b^2 > c^2 \), then the triangle is acute.

Theorem 8-4: If the sum of the squares of the two shorter sides in a right triangle is less than the square of the longest side, then the triangle is obtuse.

\[b < c \text{ and } a < c \]
If \(a^2 + b^2 < c^2 \), then the triangle is obtuse.

Example 3: Determine if the following triangles are acute, right or obtuse.

a)
Solution: Set the longest side equal to \(c \).

a) \[6^2 + \left(3\sqrt{5}\right)^2 > 8^2 \]
 \[36 + 45 > 64 \]
 \[81 > 64 \]
 The triangle is acute.

b) \[15^2 + 14^2 > 21^2 \]
 \[225 + 196 > 441 \]
 \[421 < 441 \]
 The triangle is obtuse.

Example 4: Graph \(A(-4, 1), B(3, 8), \) and \(C(9, 6) \). Determine if \(\triangle ABC \) is acute, obtuse, or right.

Solution: Use the distance formula to find the length of each side.
$AB = \sqrt{(-4 - 3)^2 + (1 - 8)^2} = \sqrt{49 + 49} = \sqrt{98} = 7 \sqrt{2}$

$BC = \sqrt{(3 - 9)^2 + (8 - 6)^2} = \sqrt{36 + 4} = \sqrt{40} = 2 \sqrt{10}$

$AC = \sqrt{(-4 - 9)^2 + (1 - 6)^2} = \sqrt{169 + 25} = \sqrt{194}$

Plug these lengths into the Pythagorean Theorem.

$\left(\sqrt{98}\right)^2 + \left(\sqrt{40}\right)^2 = \left(\sqrt{194}\right)^2$

$98 + 40 \neq 194$

$138 < 194$

$\triangle ABC$ is an obtuse triangle.

Know What? Revisited Find the length of the diagonal.

$65^2 + 72^2 = c^2$

$4225 + 5184 = c^2$

$9409 = c^2$

$c = 97$

To make the building rectangular, both diagonals must be 97 feet.

Review Questions

- Questions 1-6 are similar to Examples 1 and 2.
- Questions 7-15 are similar to Example 3.
- Questions 16-20 are similar to Example 4.
- Questions 21-24 use the Pythagorean Theorem.
- Question 25 uses the definition of similar triangles.

Determine if the following lengths make a right triangle.

1. 7, 24, 25
2. $\sqrt{5}, 2 \sqrt{10}, 3 \sqrt{5}$
3. $2 \sqrt{3}, \sqrt{6}, 8$
4. 15, 20, 25
5. 20, 25, 30
6. $8 \sqrt{3}, 6, 2 \sqrt{39}$

Determine if the following triangles are acute, right or obtuse.

7. 7, 8, 9
8. 14, 48, 50
9. 5, 12, 15
10. 13, 84, 85
11. 20, 20, 24
12. 35, 40, 51
13. 39, 80, 89
14. 20, 21, 38
15. 48, 55, 76

Graph each set of points and determine if \(\triangle ABC \) is acute, right, or obtuse, using the distance formula.

16. \(A(3, -5), B(-5, -8), C(-2, 7) \)
17. \(A(5, 3), B(2, -7), C(-1, 5) \)
18. \(A(1, 6), B(5, 2), C(-2, 3) \)
19. \(A(-6, 1), B(-4, -5), C(5, -2) \)
20. Show that #18 is a right triangle by using the slopes of the sides of the triangle. The figure to the right is a rectangular prism. All sides (or faces) are either squares (the front and back) or rectangles (the four around the middle). All faces are perpendicular.

![Rectangular Prism Diagram]

21. Find \(c \).
22. Find \(d \).

Now, the figure is a cube, where all the sides are squares. If all the sides have length 4, find:

23. Find \(c \).
24. Find \(d \).

![Cube Diagram]

25. **Writing** Explain why \(m\angle A = 90^\circ \).
2.

a. \((5\sqrt{12})^2 = 5^2 \cdot 12 = 25 \cdot 12 = 300 \)

b. \(\frac{14}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{14\sqrt{2}}{2} = 7\sqrt{2} \)

c. \(\frac{18}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{18\sqrt{3}}{3} = 6\sqrt{3} \)
8.3 Using Similar Right Triangles

Learning Objectives

- Identify similar triangles inscribed in a larger triangle.
- Use proportions in similar right triangles.

Review Queue

1. Solve the following ratios.
 a. $\frac{3}{x} = \frac{x}{27}$
 b. $\frac{\sqrt{6}}{x} = \frac{x}{9\sqrt{6}}$
 c. $\frac{x}{15} = \frac{12}{x}$

2. If the legs of an isosceles right triangle are 4, find the length of the hypotenuse. Draw a picture and simplify the radical.

Know What? The bridge to the right is called a truss bridge. It is a steel bridge with a series of right triangles that are connected as support. All the red right triangles are similar. Can you find x, y and z?

Inscribed Similar Triangles

You may recall that if two objects are similar, corresponding angles are congruent and their sides are proportional in length.

Theorem 8-5: If an altitude is drawn from the right angle of any right triangle, then the two triangles formed are similar to the original triangle and all three triangles are similar to each other.
In \(\triangle ADB \), \(m\angle A = 90^\circ \) and \(AC \perp DB \), then \(\triangle ADB \sim \triangle CDA \sim \triangle CAB \).

Example 1: Write the similarity statement for the triangles below.

Solution: Separate out the three triangles.

Line up the congruent angles: \(\triangle IRE \sim \triangle ITR \sim \triangle RTE \)

We can also use the side proportions to find the length of the altitude.

Example 2: Find the value of \(x \).

Solution: Separate the triangles to find the corresponding sides.
Set up a proportion.

\[
\frac{\text{shorter leg in } \triangle EDG}{\text{shorter leg in } \triangle DFG} = \frac{\text{hypotenuse in } \triangle EDG}{\text{hypotenuse in } \triangle DFG}
\]

\[
\frac{6}{x} = \frac{10}{8}
\]

\[
48 = 10x
\]

\[
x = 4.8
\]

Example 3: Find the value of \(x\).

Solution: Set up a proportion.

\[
\frac{\text{shorter leg in } \triangle SVT}{\text{shorter leg in } \triangle RST} = \frac{\text{hypotenuse in } \triangle SVT}{\text{hypotenuse in } \triangle RST}
\]

\[
\frac{4}{x} = \frac{x}{20}
\]

\[
x^2 = 80
\]

\[
x = \sqrt{80} = 4\sqrt{5}
\]

Example 4: Find the value of \(y\) in \(\triangle RST\) above.

Solution: Use the Pythagorean Theorem.

\[
y^2 + \left(4\sqrt{5}\right)^2 = 20^2
\]

\[
y^2 + 80 = 400
\]

\[
y^2 = 320
\]

\[
y = \sqrt{320} = 8\sqrt{5}
\]
The Geometric Mean

Geometric Mean: The geometric mean of two positive numbers \(a\) and \(b\) is the positive number \(x\), such that \(\frac{a}{x} = \frac{x}{b}\) or \(x^2 = ab\) and \(x = \sqrt{ab}\).

Example 5: Find the geometric mean of 24 and 36.

Solution: \(x = \sqrt{24 \cdot 36} = \sqrt{12 \cdot 2 \cdot 12 \cdot 3} = 12 \sqrt{6}\)

Example 6: Find the geometric mean of 18 and 54.

Solution: \(x = \sqrt{18 \cdot 54} = \sqrt{18 \cdot 18 \cdot 3} = 18 \sqrt{3}\)

In both of these examples, we did not multiply the numbers together. This makes it easier to simplify the radical. A practical application of the geometric mean is to find the altitude of a right triangle.

Example 7: Find the value of \(x\).

\[
\frac{\text{shortest leg of smallest } \triangle}{\text{shortest leg of middle } \triangle} = \frac{\text{longer leg of smallest } \triangle}{\text{longer leg of middle } \triangle} \\
\frac{9}{x} = \frac{x}{27} \\
x^2 = 243 \\
x = \sqrt{243} = 9 \sqrt{3}
\]

In Example 7, \(\frac{9}{x} = \frac{x}{27}\) is in the definition of the geometric mean. So, the altitude is the geometric mean of the two segments that it divides the hypotenuse into. In other words, \(\frac{BC}{AC} = \frac{AC}{DC}\). Two other true proportions are \(\frac{BC}{AB} = \frac{AD}{DB}\) and \(\frac{DC}{AD} = \frac{AB}{DB}\).

Example 8: Find the value of \(x\) and \(y\).
Solution: Separate the triangles. Write a proportion for x.

\[
\frac{20}{x} = \frac{x}{35} \quad \Rightarrow \quad x^2 = 20 \cdot 35 \quad \Rightarrow \quad x = \sqrt{20 \cdot 35} \quad \Rightarrow \quad x = 10 \sqrt{7}
\]

Set up a proportion for y. Or, you can use the Pythagorean Theorem to solve for y.

\[
\frac{15}{y} = \frac{y}{35} \quad \Rightarrow \quad (10 \sqrt{7})^2 + y^2 = 35^2
\]

\[
y^2 = 15 \cdot 35 \quad \Rightarrow \quad 700 + y^2 = 1225
\]

\[
y = \sqrt{15 \cdot 35} \quad \Rightarrow \quad y = \sqrt{525} = 5 \sqrt{21}
\]

Use the method you feel most comfortable with.

Know What? Revisited To find the hypotenuse of the smallest triangle, do the Pythagorean Theorem.
Because the triangles are similar, find the scale factor of \(\frac{70}{28} = 2.5 \).

\[
y = 45 \cdot 2.5 = 112.5 \quad \text{and} \quad z = 53 \cdot 2.5 = 135.5
\]

Review Questions

- Questions 1-4 use the ratios of similar right triangles.
- Questions 5-8 are similar to Example 1.
- Questions 9-11 are similar to Examples 2-4.
- Questions 12-17 are similar to Examples 5 and 6.
- Questions 18-29 are similar to Examples 2, 3, 4, 7, and 8.
- Question 30 is a proof of theorem 8-5.

Fill in the blanks.

1. \(\triangle BAD \sim \triangle \) ___ \(\sim \triangle \) ___
2. \(\frac{BC}{AD} = \frac{?}{?} \)
3. \(\frac{AB}{AD} = \frac{AB}{AD} \)
4. \(\frac{AD}{BD} = \frac{AD}{BD} \)

Write the similarity statement for the right triangles in each diagram.

5.

6.
Use the diagram to answer questions 8-11.

8. Write the similarity statement for the three triangles in the diagram.
9. If $JM = 12$ and $ML = 9$, find KM.
10. Find JK.
11. Find KL.

Find the geometric mean between the following two numbers. Simplify all radicals.

12. 16 and 32
13. 45 and 35
14. 10 and 14
15. 28 and 42
16. 40 and 100
17. 51 and 8

Find the length of the missing variable(s). Simplify all radicals.

18.
19.
8.3. Using Similar Right Triangles

20.
\[\triangle ABC \]
\[\overline{AB} = 18 \]
\[\overline{BC} = 9 \]
\[\overline{AC} = z \]

21.
\[\triangle DEF \]
\[\overline{DE} = 36 \]
\[\overline{EF} = 12 \]
\[\overline{DF} = x \]

22.
\[\triangle GHI \]
\[\overline{GI} = 15 \]
\[\overline{HI} = 16 \]
\[\overline{GI} = y \]

23.
\[\triangle JKL \]
\[\overline{JK} = 28 \]
\[\overline{KL} = 63 \]
\[\overline{JL} = z \]

24.
\[\triangle MNO \]
\[\overline{MN} = 15 \]
\[\overline{NO} = 12 \]
\[\overline{MN} = x \]

25.
\[\triangle PQR \]
\[\overline{PR} = 21 \]
\[\overline{QR} = 7 \]
\[\overline{PR} = y \]

26.
\[\triangle STU \]
\[\overline{ST} = 8 \]
\[\overline{TU} = 8 \]
\[\overline{TU} = z \]
30. Fill in the blanks of the proof for Theorem 8-5.

![Diagram](image)

Given: \(\triangle ABD \) with \(\overline{AC} \perp \overline{DB} \) and \(\angle DAB \) is a right angle. **Prove:** \(\triangle ABD \sim \triangle CBA \sim \triangle CAD \)

Table 8.1:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2. (\angle DCA) and (\angle ACB) are right angles</td>
<td>Given</td>
</tr>
<tr>
<td>3. (\angle DAB \cong \angle DCA \cong \angle ACB)</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>4.</td>
<td>AA Similarity Postulate</td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6. (B \cong \angle B)</td>
<td></td>
</tr>
<tr>
<td>7. (\triangle CBA \cong \triangle ABD)</td>
<td></td>
</tr>
<tr>
<td>8. (\triangle CAD \cong \triangle CBA)</td>
<td></td>
</tr>
</tbody>
</table>

Review Queue Answers

1.
 a. \(\frac{3}{x} = \frac{x}{8} \rightarrow x^2 = 81 \rightarrow x = 9 \)
 b. \(\frac{\sqrt{2}}{x} = \frac{x}{9} \rightarrow x^2 = 54 \rightarrow x = \sqrt{54} = \sqrt{9 \cdot 6} = 3 \sqrt{6} \)
 c. \(\frac{x}{15} = \frac{12}{x} \rightarrow x^2 = 180 \rightarrow x = \sqrt{180} = \sqrt{4 \cdot 45} = 2 \cdot 3 \sqrt{5} = 6 \sqrt{5} \)

2. \(4^2 + 4^2 = h^2 \)
 \(h = \sqrt{32} = 4 \sqrt{2} \)
Learning Objectives

- Learn and use the 45-45-90 triangle ratio.
- Learn and use the 30-60-90 triangle ratio.

Review Queue

Find the value of the missing variables. Simplify all radicals.

1.
2.
3.

4. Is 9, 12, and 15 a right triangle?
5. Is 3, $3\sqrt{3}$, and 6 a right triangle?

Know What? A baseball diamond is a square with sides that are 90 feet long. Each base is a corner of the square. What is the length between 1st and 3rd base and between 2nd base and home plate? (the red dotted lines in the diagram).
Isosceles Right Triangles

There are two special right triangles. The first is an isosceles right triangle.

Isosceles Right Triangle: A right triangle with congruent legs and acute angles. This triangle is also called a 45-45-90 triangle (after the angle measures).

\[\triangle ABC \text{ is a right triangle with:} \]

\[m\angle A = 90^\circ \]
\[AB \cong AC \]
\[m\angle B = m\angle C = 45^\circ \]

Investigation 8-2: Properties of an Isosceles Right Triangle

Tools Needed: Pencil, paper, compass, ruler, protractor

1. Draw an isosceles right triangle with 2 inch legs and the 90° angle between them.

2. Find the measure of the hypotenuse, using the Pythagorean Theorem. Simplify the radical.
\[2^2 + 2^2 = c^2 \]
\[8 = c^2 \]
\[c = \sqrt{8} = \sqrt{4 \cdot 2} = 2 \sqrt{2} \]

What do you notice about the length of the legs and hypotenuse?

3. Now, let’s say the legs are of length \(x \) and the hypotenuse is \(h \). Use the Pythagorean Theorem to find the hypotenuse. How is it similar to your answer in #2?

\[x^2 + x^2 = h^2 \]
\[2x^2 = h^2 \]
\[x \sqrt{2} = h \]

45-45-90 Theorem: If a right triangle is isosceles, then its sides are \(x : x : x \sqrt{2} \).

For any isosceles right triangle, the legs are \(x \) and the hypotenuse is always \(x \sqrt{2} \). Because the three angles are always 45°, 45°, and 90°, all isosceles right triangles are similar.

Example 1: Find the length of the missing sides.

a)
8.4. Special Right Triangles

Solution: Use the $x : x : x \sqrt{2}$ ratio.

a) $TV = 6$ because it is equal to ST. So, $SV = 6 \cdot \sqrt{2} = 6 \sqrt{2}$.

b) $AB = 9 \sqrt{2}$ because it is equal to AC. So, $BC = 9 \sqrt{2} \cdot \sqrt{2} = 9 \cdot 2 = 18$.

Example 2: Find the length of x.

a)

![Diagram of a square with diagonal $12\sqrt{2}$]

Solution: Use the $x : x : x \sqrt{2}$ ratio.

a) $12 \sqrt{2}$ is the diagonal of the square. Remember that the diagonal of a square bisects each angle, so it splits the square into two 45-45-90 triangles. $12 \sqrt{2}$ would be the hypotenuse, or equal to $x \sqrt{2}$.

$$12 \sqrt{2} = x \sqrt{2}$$

$$12 = x$$

b) Here, we are given the hypotenuse. Solve for x in the ratio.

$$x \sqrt{2} = 16$$

$$x = \frac{16 \sqrt{2}}{\sqrt{2}} = \frac{16 \sqrt{2}}{2} = 8 \sqrt{2}$$

In part b, we **rationalized the denominator** which we learned in the first section.

30-60-90 Triangles

The second special right triangle is called a 30-60-90 triangle, after the three angles. To draw a 30-60-90 triangle, start with an equilateral triangle.
Investigation 8-3: Properties of a 30-60-90 Triangle

Tools Needed: Pencil, paper, ruler, compass

1. Construct an equilateral triangle with 2 inch sides.

http://www.mathsisfun.com/geometry/construct-equitriangle.html

2. Draw or construct the altitude from the top vertex to form two congruent triangles.

3. Find the measure of the two angles at the top vertex and the length of the shorter leg.

The top angles are each 30° and the shorter leg is 1 in because the altitude of an equilateral triangle is also the angle and perpendicular bisector.

4. Find the length of the longer leg, using the Pythagorean Theorem. Simplify the radical.

\[
1^2 + b^2 = 2^2 \\
1 + b^2 = 4 \\
b^2 = 3 \\
b = \sqrt{3}
\]

5. Now, let’s say the shorter leg is length \(x \) and the hypotenuse is \(2x \). Use the Pythagorean Theorem to find the longer leg. How is this similar to your answer in #4?
8.4. Special Right Triangles

\[x^2 + b^2 = (2x)^2 \]
\[x^2 + b^2 = 4x^2 \]
\[b^2 = 3x^2 \]
\[b = x\sqrt{3} \]

30-60-90 Theorem: If a triangle has angle measures 30°, 60° and 90°, then the sides are \(x : x\sqrt{3} : 2x \).

The shortest leg is always \(x \), the longest leg is always \(x\sqrt{3} \), and the hypotenuse is always \(2x \). If you ever forget these theorems, you can still use the Pythagorean Theorem.

Example 3: Find the length of the missing sides.

a)

![Diagram of a 30-60-90 triangle with sides labeled c, 5, b, and 30° angle]

Solution: In part a, we are given the shortest leg and in part b, we are given the hypotenuse.

a) If \(x = 5 \), then the longer leg, \(b = 5\sqrt{3} \), and the hypotenuse, \(c = 2(5) = 10 \).

b) Now, \(2x = 20 \), so the shorter leg, \(f = \frac{20}{2} = 10 \), and the longer leg, \(g = 10\sqrt{3} \).

Example 4: Find the value of \(x \) and \(y \).

a)

![Diagram of a 30-60-90 triangle with sides labeled 12, x, and 60° angle]

b)

![Diagram of a 30-60-90 triangle with sides labeled 16, x, and 30° angle]
Solution: In part a, we are given the longer leg and in part b, we are given the hypotenuse.

a) \[x \sqrt{3} = 12 \]
\[x = \frac{12}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{12 \sqrt{3}}{3} = 4 \sqrt{3} \]
The hypotenuse is
\[y = 2(4 \sqrt{3}) = 8 \sqrt{3} \]

b) \[2x = 16 \]
\[x = 8 \]
The longer leg is
\[y = 8 \cdot \sqrt{3} = 8 \sqrt{3} \]

Example 5: A rectangle has sides 4 and \(4 \sqrt{3} \). What is the length of the diagonal?

Solution: If you are not given a picture, draw one.

![Rectangle Diagram](https://www.ck12.org/digital-content/image/455)

The two lengths are \(x, x \sqrt{3} \), so the diagonal would be \(2x \), or \(2(4) = 8 \).

If you did not recognize this is a 30-60-90 triangle, you can use the Pythagorean Theorem too.

\[4^2 + \left(4 \sqrt{3} \right)^2 = d^2 \]
\[16 + 48 = d^2 \]
\[d = \sqrt{64} = 8 \]

Example 6: A square has a diagonal with length 10, what are the sides?

Solution: Draw a picture.

![Square Diagram](https://www.ck12.org/digital-content/image/455)

We know half of a square is a 45-45-90 triangle, so \(10 = s \sqrt{2} \).

\[s \sqrt{2} = 10 \]
\[s = \frac{10}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{10 \sqrt{2}}{2} = 5 \sqrt{2} \]
8.4. Special Right Triangles

Know What? Revisited The distance between 1st and 3rd base is one of the diagonals of the square. So, it would be the same as the hypotenuse of a 45-45-90 triangle. Using our ratios, the distance is $90 \sqrt{2} \approx 127.3 \text{ ft}$. The distance between 2nd base and home plate is the same length.

![Diagram of a baseball field with distances labeled]

Review Questions

- Questions 1-4 are similar to Example 1-4.
- Questions 5-8 are similar to Examples 5 and 6.
- Questions 9-23 are similar to Examples 1-4.
- Questions 24 and 25 are a challenge.

1. In an isosceles right triangle, if a leg is 4, then the hypotenuse is ________.
2. In a 30-60-90 triangle, if the shorter leg is 5, then the longer leg is ________ and the hypotenuse is ________.
3. In an isosceles right triangle, if a leg is x, then the hypotenuse is ________.
4. In a 30-60-90 triangle, if the shorter leg is x, then the longer leg is ________ and the hypotenuse is ________.
5. A square has sides of length 15. What is the length of the diagonal?
6. A square’s diagonal is 22. What is the length of each side?
7. A rectangle has sides of length 6 and $6 \sqrt{3}$. What is the length of the diagonal?
8. Two (opposite) sides of a rectangle are 10 and the diagonal is 20. What is the length of the other two sides?

For questions 9-23, find the lengths of the missing sides. Simplify all radicals.

![Diagram of geometric figures]

9. ________
10. ________
8.4. Special Right Triangles

Challenge For 24 and 25, find the value of y. You may need to draw in additional lines. Round all answers to the nearest hundredth.
Review Queue Answers

1. \(4^2 + 4^2 = x^2\)
 \[
 32 = x^2 \\
 x = 4\sqrt{2}
 \]
2. \(3^2 + y^2 = 6^2\)
 \[
 y^2 = 27 \\
 y = 3\sqrt{3}
 \]
3. \(x^2 + x^2 = \left(10\sqrt{2}\right)^2\)
 \[
 2x^2 = 200 \\
 x^2 = 100 \\
 x = 10
 \]
4. Yes, \(9^2 + 12^2 = 15^2 \rightarrow 81 + 144 = 225\)
5. Yes, \(3^2 + \left(3\sqrt{3}\right)^2 = 6^2 \rightarrow 9 + 27 = 36\)
8.5 Tangent, Sine and Cosine

Learning Objectives

- Use the tangent, sine and cosine ratios.
- Use a scientific calculator to find sine, cosine and tangent.
- Use trigonometric ratios in real-life situations.

Review Queue

1. The legs of an isosceles right triangle have length 14. What is the hypotenuse?
2. Do the lengths 8, 16, 20 make a right triangle? If not, is the triangle obtuse or acute?
3. In a 30-60-90 triangle, what do the 30, 60, and 90 refer to?

Know What? A restaurant is building a wheelchair ramp. The angle of elevation for the ramp is 5°. If the vertical distance from the sidewalk to the front door is 4 feet, how long will the ramp be (x)? Round your answers to the nearest hundredth.

![Diagram of a ramp with angle 5° and vertical distance 4 ft.]

What is Trigonometry?

In this lesson we will define three trigonometric (or trig) ratios. Once we have defined these ratios, we will be able to solve problems like the Know What? above.

Trigonometry: The study of the relationships between the sides and angles of right triangles.

The legs are called adjacent or opposite depending on which acute angle is being used.

- \(a\) is adjacent to \(\angle B\)
- \(b\) is adjacent to \(\angle A\)
- \(c\) is the hypotenuse

\(c\) is the hypotenuse
Sine, Cosine, and Tangent Ratios

The three basic trig ratios are called, sine, cosine and tangent. For now, we will only take the sine, cosine and tangent of acute angles. However, you can use these ratios with obtuse angles as well.

For right triangle $\triangle ABC$, we have:

Sine Ratio: $\sin A = \frac{a}{c}$ or $\sin B = \frac{b}{c}$

Cosine Ratio: $\cos A = \frac{b}{c}$ or $\cos B = \frac{a}{c}$

Tangent Ratio: $\tan A = \frac{a}{b}$ or $\tan B = \frac{b}{a}$

An easy way to remember ratios is to use SOH-CAH-TOA.

Example 1: Find the sine, cosine and tangent ratios of $\angle A$.

Solution: First, we need to use the Pythagorean Theorem to find the length of the hypotenuse.

$$5^2 + 12^2 = h^2$$
$$13 = h$$

$$\sin A = \frac{\text{leg opposite } \angle A}{\text{hypotenuse}} = \frac{12}{13}$$
$$\cos A = \frac{\text{leg adjacent to } \angle A}{\text{hypotenuse}} = \frac{5}{13}$$

$$\tan A = \frac{\text{leg opposite } \angle A}{\text{leg adjacent to } \angle A} = \frac{12}{5}$$

A few important points:

- Always reduce ratios (fractions) when you can.
- Use the Pythagorean Theorem to find the missing side (if there is one).
- If there is a radical in the denominator, rationalize the denominator.
Example 2: Find the sine, cosine, and tangent of \(\angle B \).

\[AC^2 + 5^2 = 15^2 \]
\[AC^2 = 200 \]
\[AC = 10 \sqrt{2} \]
\[\sin B = \frac{10 \sqrt{2}}{15} = \frac{2 \sqrt{2}}{3} \]
\[\cos B = \frac{5}{15} = \frac{1}{3} \]
\[\tan B = \frac{10 \sqrt{2}}{5} = 2 \sqrt{2} \]

Example 3: Find the sine, cosine and tangent of 30°.

\[\sin 30^\circ = \frac{6}{12} = \frac{1}{2} \]
\[\cos 30^\circ = \frac{6 \sqrt{3}}{12} = \frac{3}{2} \]
\[\tan 30^\circ = \frac{6}{6 \sqrt{3}} = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3} \]

Sine, Cosine, and Tangent with a Calculator

From Example 3, we can conclude that there is a fixed sine, cosine, and tangent value for every angle, from 0° to 90°. Your scientific (or graphing) calculator knows all the trigonometric values for any angle. Your calculator, should have [SIN], [COS], and [TAN] buttons.

Example 4: Find the trigonometric value, using your calculator. Round to 4 decimal places.

a) \(\sin 78^\circ \)

b) \(\cos 60^\circ \)

c) \(\tan 15^\circ \)

Solution: Depending on your calculator, you enter the degree and then press the trig button or the other way around. Also, make sure the mode of your calculator is in DEGREES.
Finding the Sides of a Triangle using Trig Ratios

One application of the trigonometric ratios is to use them to find the missing sides of a right triangle.

Example 5: Find the value of each variable. Round your answer to the nearest tenth.

Solution: We are given the hypotenuse. Use sine to find b, and cosine to find a.

$$\sin 22^\circ = \frac{b}{30} \quad \cos 22^\circ = \frac{a}{30}$$

$$30 \cdot \sin 22^\circ = b \quad 30 \cdot \cos 22^\circ = a$$

$$b \approx 11.2 \quad a \approx 27.8$$

Example 6: Find the value of each variable. Round your answer to the nearest tenth.

Solution: We are given the adjacent leg to 42°. To find c, use cosine and tangent to find d.

$$\cos 42^\circ = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{9}{c} \quad \tan 42^\circ = \frac{\text{opposite}}{\text{adjacent}} = \frac{d}{9}$$

$$c \cdot \cos 42^\circ = 9 \quad 9 \cdot \tan 42^\circ = d$$

$$c = \frac{9}{\cos 42^\circ} \approx 12.1 \quad d \approx 8.1$$
Anytime you use trigonometric ratios, only use the information that you are given. This will give the most accurate answers.

Angles of Depression and Elevation

Another application of the trigonometric ratios is to find lengths that you cannot measure. Very frequently, angles of depression and elevation are used in these types of problems.

Angle of Depression: The angle measured from the horizon or horizontal line, down.

Angle of Elevation: The angle measure from the horizon or horizontal line, up.

Example 7: A math student is standing 25 feet from the base of the Washington Monument. The angle of elevation from her horizontal line of sight is 87.4°. If her “eye height” is 5 ft, how tall is the monument?

Solution: We can find the height of the monument by using the tangent ratio.

\[
\tan 87.4° = \frac{h}{25}
\]

\[
h = 25 \cdot \tan 87.4° = 550.54
\]

Adding 5 ft, the total height of the Washington Monument is 555.54 ft.

Know What? Revisited To find the length of the ramp, we need to use sine.
\[
\sin 5^\circ = \frac{4}{x} \\
y = \frac{2}{\sin 5^\circ} = 22.95
\]

Review Questions

- Questions 1-8 use the definitions of sine, cosine and tangent.
- Questions 9-16 are similar to Example 4.
- Questions 17-22 are similar to Examples 1-3.
- Questions 23-28 are similar to Examples 5 and 6.
- Questions 29 and 30 are similar to Example 7.

Use the diagram to fill in the blanks below.

\[\text{Diagram Image}\]

1. \(\tan D = \frac{?}{?}\)
2. \(\sin F = \frac{?}{?}\)
3. \(\tan F = \frac{?}{?}\)
4. \(\cos F = \frac{?}{?}\)
5. \(\sin D = \frac{?}{?}\)
6. \(\cos D = \frac{?}{?}\)

From questions 1-6, we can conclude the following. Fill in the blanks.

7. \(\cos ___ = \sin F\) and \(\sin __ = \cos F\).
8. \(\tan D\) and \(\tan F\) are _________ of each other.

Use your calculator to find the value of each trig function below. Round to four decimal places.

9. \(\sin 24^\circ\)
10. \(\cos 45^\circ\)
11. \(\tan 88^\circ\)
12. \(\sin 43^\circ\)
13. \(\tan 12^\circ\)
14. \(\cos 79^\circ\)
15. \(\sin 82^\circ\)
16. \(\tan 45^\circ\)

Find the sine, cosine and tangent of \(\angle A\). Reduce all fractions and radicals.
Find the length of the missing sides. Round your answers to the nearest tenth.
29. Kristin is swimming in the ocean and notices a coral reef below her. The angle of depression is 35° and the depth of the ocean, at that point is 250 feet. How far away is she from the reef?

30. The Leaning Tower of Piza currently “leans” at a 4° angle and has a vertical height of 55.86 meters. How tall was the tower when it was originally built?
Review Queue Answers

1. The hypotenuse is \(14 \sqrt{2}\).
2. No, \(8^2 + 16^2 < 20^2\), the triangle is obtuse.
3. \(30^\circ, 60^\circ, \text{ and } 90^\circ\) refer to the angle measures in the special right triangle.
8.6 Inverse Trigonometric Ratios

Learning Objectives

• Use the inverse trigonometric ratios to find an angle in a right triangle.
• Solve a right triangle.

Review Queue

Find the lengths of the missing sides. Round your answer to the nearest tenth.

3. Draw an isosceles right triangle with legs of length 3. What is the hypotenuse?
4. Use the triangle from #3, to find the sine, cosine, and tangent of 45°.

Know What? The longest escalator in North America is at the Wheaton Metro Station in Maryland. It is 230 feet long and is 115 ft. high. What is the angle of elevation, \(x \), of this escalator?
Inverse Trigonometric Ratios

In mathematics, the word inverse means “undo.” For example, addition and subtraction are inverses of each other because one undoes the other. When we apply inverses to the trigonometric ratios, we can find acute angle measures as long as we are given two sides.

Inverse Tangent: Labeled \tan^{-1}, the “-1” means inverse.

\[
\tan^{-1}\left(\frac{b}{a}\right) = m\angle B \\
\tan^{-1}\left(\frac{a}{b}\right) = m\angle A
\]

Inverse Sine: Labeled \sin^{-1}.

\[
\sin^{-1}\left(\frac{b}{c}\right) = m\angle B \\
\sin^{-1}\left(\frac{a}{c}\right) = m\angle A
\]

Inverse Cosine: Labeled \cos^{-1}.

\[
\cos^{-1}\left(\frac{a}{c}\right) = m\angle B \\
\cos^{-1}\left(\frac{b}{c}\right) = m\angle A
\]

In order to find the measure of the angles, you will need you use your calculator. On most scientific and graphing calculators, the buttons look like $[\text{SIN}^{-1}]$, $[\text{COS}^{-1}]$, and $[\text{TAN}^{-1}]$. You might also have to hit a shift or 2^{nd} button to access these functions.
Example 1: Use the sides of the triangle and your calculator to find the value of \(\angle A \). Round your answer to the nearest tenth of a degree.

![Diagram of a right triangle with sides 20, 25, and hypotenuse A]

Solution: In reference to \(\angle A \), we are given the opposite leg and the adjacent leg. This means we should use the tangent ratio.

\[
\tan A = \frac{20}{25} = \frac{4}{5}.
\]
So, \(\tan^{-1} \frac{4}{5} = m \angle A \). Now, use your calculator.

If you are using a TI-83 or 84, the keystrokes would be: \([2^{nd}][\text{TAN}](\frac{4}{5})\) [ENTER] and the screen looks like:

\[
\tan^{-1}(4/5) = 38.65980825
\]

\(m \angle A = 38.7^\circ \)

Example 2: \(\angle A \) is an acute angle in a right triangle. Find \(m \angle A \) to the nearest tenth of a degree.

a) \(\sin A = 0.68 \)

b) \(\cos A = 0.85 \)

c) \(\tan A = 0.34 \)

Solution:

a) \(m \angle A = \sin^{-1} 0.68 = 42.8^\circ \)

b) \(m \angle A = \cos^{-1} 0.85 = 31.8^\circ \)

c) \(m \angle A = \tan^{-1} 0.34 = 18.8^\circ \)

Solving Triangles

To solve a right triangle, you need to find all sides and angles in a right triangle, using sine, cosine or tangent, inverse sine, inverse cosine, or inverse tangent, or the Pythagorean Theorem.

Example 3: Solve the right triangle.

![Diagram of a right triangle with sides 24, 30, and hypotenuse A]
Solution: To solve this right triangle, we need to find \(AB, m \angle C \) and \(m \angle B \). Only use the values you are given.

\(AB \): Use the Pythagorean Theorem.

\[
24^2 + AB^2 = 30^2
\]
\[
576 + AB^2 = 900
\]
\[
AB^2 = 324
\]
\[
AB = \sqrt{324} = 18
\]

\(m \angle B \): Use the inverse sine ratio.

\[
\sin B = \frac{24}{30} = \frac{4}{5}
\]
\[
\sin^{-1} \left(\frac{4}{5} \right) = 53.1^\circ = m \angle B
\]

\(m \angle C \): Use the inverse cosine ratio.

\[
\cos C = \frac{24}{30} = \frac{4}{5} \rightarrow \cos^{-1} \left(\frac{4}{5} \right) = 36.9^\circ = m \angle C
\]

Example 4: Solve the right triangle.

\[
\begin{align*}
\angle B &= 62^\circ \\
AB &= 25 \\
\angle A &= ?
\end{align*}
\]

Solution: To solve this right triangle, we need to find \(AB, BC \) and \(m \angle A \).

\(AB \): Use sine ratio.

\[
\sin 62^\circ = \frac{25}{AB}
\]
\[
AB = \frac{25}{\sin 62^\circ}
\]
\[
AB \approx 28.31
\]

\(BC \): Use tangent ratio.

\[
\tan 62^\circ = \frac{25}{BC}
\]
\[
BC = \frac{25}{\tan 62^\circ}
\]
\[
BC \approx 13.30
\]
\(m\angle A \): Use Triangle Sum Theorem

\[
62^\circ + 90^\circ + m\angle A = 180^\circ \\
m\angle A = 28^\circ
\]

Example 5: Solve the right triangle.

Solution: The two acute angles are congruent, making them both 45°. This is a 45-45-90 triangle. You can use the trigonometric ratios or the special right triangle ratios.

Trigonometric Ratios

\[
\tan 45^\circ = \frac{15}{BC} \\
BC = \frac{15}{\tan 45^\circ} = 15
\]

\[
\sin 45^\circ = \frac{15}{AC} \\
AC = \frac{15}{\sin 45^\circ} \approx 21.21
\]

45-45-90 Triangle Ratios

\[BC = AB = 15, AC = 15\sqrt{2} \approx 21.21 \]

Real-Life Situations

Example 6: A 25 foot tall flagpole casts a 42 feet shadow. What is the angle that the sun hits the flagpole?

Solution: Draw a picture. The angle that the sun hits the flagpole is \(x^\circ \). We need to use the inverse tangent ratio.
8.6. Inverse Trigonometric Ratios

\[
\tan x = \frac{42}{25}
\]

\[
\tan^{-1} \left(\frac{42}{25} \right) \approx 59.2^\circ = x
\]

Example 7: Elise is standing on top of a 50 foot building and sees her friend, Molly. If Molly is 35 feet away from the base of the building, what is the angle of depression from Elise to Molly? Elise’s eye height is 4.5 feet.

Solution: Because of parallel lines, the angle of depression is equal to the angle at Molly, or \(x^\circ \). We can use the inverse tangent ratio.

\[
\tan^{-1} \left(\frac{54.5}{30} \right) = 61.2^\circ = x
\]

Know What? Revisited To find the escalator’s angle of elevation, use the inverse sine.

\[
\sin^{-1} \left(\frac{115}{230} \right) = 30^\circ \quad \text{The angle of elevation is } 30^\circ.
\]

Review Questions

- Questions 1-6 are similar to Example 1.
- Questions 7-12 are similar to Example 2.
- Questions 13-21 are similar to Examples 3 and 4.
- Questions 22-24 are similar to Examples 6 and 7.
- Questions 25-30 are a review of the trigonometric ratios.

Use your calculator to find \(m \angle A \) to the nearest tenth of a degree.
Let $\angle A$ be an acute angle in a right triangle. Find $m\angle A$ to the nearest tenth of a degree.

7. $\sin A = 0.5684$
8. $\cos A = 0.1234$
9. $\tan A = 2.78$
10. $\cos^{-1}0.9845$
11. $\tan^{-1}15.93$
12. $\sin^{-1}0.7851$

Solving the following right triangles. Find all missing sides and angles. Round any decimal answers to the nearest tenth.
8.6. Inverse Trigonometric Ratios
Real-Life Situations Use what you know about right triangles to solve for the missing angle. If needed, draw a picture. Round all answers to the nearest tenth of a degree.

22. A 75 foot building casts an 82 foot shadow. What is the angle that the sun hits the building?
23. Over 2 miles (horizontal), a road rises 300 feet (vertical). What is the angle of elevation?
24. A boat is sailing and spots a shipwreck 650 feet below the water. A diver jumps from the boat and swims 935 feet to reach the wreck. What is the angle of depression from the boat to the shipwreck?

Examining Patterns Below is a table that shows the sine, cosine, and tangent values for eight different angle measures. Answer the following questions.

<table>
<thead>
<tr>
<th>Angle (°)</th>
<th>Sine</th>
<th>Cosine</th>
<th>Tangent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.1736</td>
<td>0.9848</td>
<td>0.1763</td>
</tr>
<tr>
<td>20</td>
<td>0.3420</td>
<td>0.9397</td>
<td>0.3640</td>
</tr>
<tr>
<td>30</td>
<td>0.5000</td>
<td>0.8660</td>
<td>0.5774</td>
</tr>
<tr>
<td>40</td>
<td>0.6428</td>
<td>0.7660</td>
<td>0.8391</td>
</tr>
<tr>
<td>50</td>
<td>0.7660</td>
<td>0.6428</td>
<td>1.1918</td>
</tr>
<tr>
<td>60</td>
<td>0.8660</td>
<td>0.5000</td>
<td>1.7321</td>
</tr>
<tr>
<td>70</td>
<td>0.9397</td>
<td>0.3420</td>
<td>2.7475</td>
</tr>
<tr>
<td>80</td>
<td>0.9848</td>
<td>0.1736</td>
<td>5.6713</td>
</tr>
</tbody>
</table>

25. What value is equal to $\sin 40°$?
26. What value is equal to $\cos 70°$?
27. Describe what happens to the sine values as the angle measures increase.
28. Describe what happens to the cosine values as the angle measures increase.
29. What two numbers are the sine and cosine values between?
30. Find $\tan 85°$, $\tan 89°$, and $\tan 89.5°$ using your calculator. Now, describe what happens to the tangent values as the angle measures increase.

Review Queue Answers

1. $\sin 36° = \frac{y}{7}$ $\cos 36° = \frac{x}{7}$

 $y = 4.11$ $x = 5.66$

2. $\cos 12.7° = \frac{40}{x}$ $\tan 12.7° = \frac{y}{40}$

 $x = 41.00$ $y = 9.01$

4. $\sin 45° = \frac{3}{3\sqrt{2}} = \frac{\sqrt{2}}{2}$

 $\cos 45° = \frac{3}{3\sqrt{2}} = \frac{\sqrt{2}}{2}$

 $\tan 45° = \frac{3}{3} = 1$
8.7 Chapter 8 Review

Keywords & Theorems

The Pythagorean Theorem

• Pythagorean Theorem
• Pythagorean Triple
• Distance Formula

The Pythagorean Theorem Converse

• Pythagorean Theorem Converse
• Theorem 8-3
• Theorem 8-4

Similar Right Triangles

• Theorem 8-5
• Geometric Mean

Special Right Triangles

• Isosceles Right (45-45-90) Triangle
• 30-60-90 Triangle
• 45-45-90 Theorem
• 30-60-90 Theorem

Tangent, Sine and Cosine Ratios

• Trigonometry
• Adjacent (Leg)
• Opposite (Leg)
• Sine Ratio
• Cosine Ratio
• Tangent Ratio
• Angle of Depression
• Angle of Elevation

Solving Right Triangles

• Inverse Tangent
• Inverse Sine
• Inverse Cosine
Review

Fill in the blanks using right triangle \(\triangle ABC \).

\[a^2 + b^2 = c^2 \]
\[\sin \theta = \frac{b}{c} \]
\[\tan \theta = \frac{f}{d} \]
\[\cos \theta = \frac{b}{c} \]
\[\tan^{-1} \left(\frac{f}{c} \right) = ___ \]
\[\sin^{-1} \left(\frac{f}{b} \right) = ___ \]
\[a^2 + d^2 = b^2 \]
\[\frac{c}{b} = \frac{\sqrt{3}}{2} \]
\[\frac{d}{c} = \frac{2}{3} \]

Solve the following right triangles using the Pythagorean Theorem, the trigonometric ratios, and the inverse trigonometric ratios. When possible, simplify the radical. If not, round all decimal answers to the nearest tenth.
Determine if the following lengths make an acute, right, or obtuse triangle. If they make a right triangle, determine if the lengths are a Pythagorean triple.

20. 11, 12, 13
21. 16, 30, 34
22. 20, 25, 42
23. $10\sqrt{6}, 30, 10\sqrt{15}$
24. 22, 25, 31
25. 47, 27, 35

Find the value of x.

480
29. The angle of elevation from the base of a mountain to its peak is 76°. If its height is 2500 feet, what is the length to reach the top? Round the answer to the nearest tenth.

30. Taylor is taking an aerial tour of San Francisco in a helicopter. He spots ATT Park (baseball stadium) at a horizontal distance of 850 feet and down (vertical) 475 feet. What is the angle of depression from the helicopter to the park? Round the answer to the nearest tenth.

Texas Instruments Resources

In the CK-12 Texas Instruments Geometry FlexBook® resource, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9693 .
Keywords: Define, write theorems, and/or draw a diagram for each word below.

1st Section: The Pythagorean Theorem

Pythagorean Theorem
Pythagorean Triple
Distance Formula

Homework:

2nd Section: The Pythagorean Theorem Converse

Pythagorean Theorem Converse
Theorem 8-3
Theorem 8-4

Homework:

3rd Section: Similar Right Triangles

Theorem 8-5
Geometric Mean

Homework:
4th Section: Special Right Triangles

Isosceles Right (45-45-90) Triangle

30-60-90 Triangle
45-45-90 Theorem
30-60-90 Theorem

Homework:

5th Section: Tangent, Sine and Cosine Ratios

Trigonometry
Adjacent (Leg)
Opposite (Leg)
Sine Ratio
Cosine Ratio
Tangent Ratio
Angle of Depression
Angle of Elevation
Homework:
6th Section: Solving Right Triangles
Inverse Tangent
Inverse Sine
Inverse Cosine
Solving Right Triangles
First, we will define all the parts of circles and explore the properties of tangent lines, arcs, inscribed angles, and chords. Next, we will learn about angles and segments that are formed by chords, tangents and secants. Lastly, we will place circles in the coordinate plane and find the equation of and graph circles.
9.1 Parts of Circles & Tangent Lines

Learning Objectives

- Define the parts of a circle.
- Discover the properties of tangent lines.

Review Queue

1. Find the equation of the line with \(m = \frac{2}{5} \) and y-intercept of 4.
2. Find the equation of the line with \(m = -2 \) and passes through (4, -5).
3. Find the equation of the line that passes through (6, 2) and (-3, -1).
4. Find the equation of the line perpendicular to the line in #2 and passes through (-8, 11).

Know What? The clock to the right is an ancient astronomical clock in Prague. It has a large background circle that tells the local time and the “ancient time” and the smaller circle rotates to show the current astrological sign. The yellow point is the center of the larger clock. How does the orange line relate to the small and large circle? How does the hand with the moon on it relate to both circles?

Defining Terms

Circle: The set of all points that are the same distance away from a specific point, called the *center.*

The center of the circle is point A. We call this circle, “circle \(A \),” and it is labeled \(\bigcirc A \).

Radii (the plural of radius) are line segments. There are infinitely many radii in any circle and they are all equal.
Radius: The distance from the center to the circle.

Chord: A line segment whose endpoints are on a circle.

Diameter: A chord that passes through the center of the circle.

Secant: A line that intersects a circle in two points.

The tangent ray \overrightarrow{TP} and tangent segment TP are also called tangents.

The length of a diameter is two times the length of a radius.

Tangent: A line that intersects a circle in exactly one point.

Point of Tangency: The point where the tangent line touches the circle.

Example 1: Find the parts of $\bigcirc A$ that best fit each description.

a) A radius
b) A chord
c) A tangent line
d) A point of tangency
e) A diameter
f) A secant

Solution:

a) HA or AF
b) CD, HF, or DG
c) BJ
d) Point H
e) HF
f) BD

Coplanar Circles

Example 2: Draw an example of how two circles can intersect with no, one and two points of intersection. You will make three separate drawings.

Solution:

Tangent Circles: When two circles intersect at one point.

Concentric Circles: When two circles have the same center, but different radii.

Congruent Circles: Two circles with the same radius, but different centers.

If two circles have different radii, they are similar. *All circles are similar.*

Example 3: Determine if any of the following circles are congruent.
Solution: From each center, count the units to the circle. It is easiest to count vertically or horizontally. Doing this, we have:

Radius of \(\bigodot A = 3 \text{ units} \)
Radius of \(\bigodot B = 4 \text{ units} \)
Radius of \(\bigodot C = 3 \text{ units} \)

From these measurements, we see that \(\bigodot A \cong \bigodot C \).
Notice the circles are congruent. The lengths of the radii are equal.

Internally & Externally Tangent

If two circles are tangent to each other, then they are internally or externally tangent.

Internally Tangent Circles: When two circles are tangent and one is inside the other.

Externally Tangent Circles: When two circles are tangent and next to each other.

Internally Tangent

Externally Tangent
If circles are not tangent, they can still share a tangent line, called a common tangent.

Common Internal Tangent: A line that is tangent to two circles and passes between the circles.

Common External Tangent: A line that is tangent to two circles and stays on the top or bottom of both circles.

Investigation 9-1: Tangent Line and Radius Property

Tools Needed: compass, ruler, pencil, paper, protractor

1. Using your compass, draw a circle. Locate the center and draw a radius. Label the radius \overline{AB}, with A as the center.
2. Draw a tangent line, \(\overrightarrow{BC} \), where \(B \) is the point of tangency. To draw a tangent line, take your ruler and line it up with point \(B \). \(B \) must be the only point on the circle that the line passes through.

3. Find \(m\angle ABC \).

Tangent to a Circle Theorem: A line is tangent to a circle if and only if the line is perpendicular to the radius drawn to the point of tangency.

\(\overrightarrow{BC} \) is tangent at point \(B \) if and only if \(\overrightarrow{BC} \bot \overrightarrow{AB} \).

This theorem uses the words “if and only if,” making it a biconditional statement, which means the converse of this theorem is also true.

Example 4: In \(\bigcirc A \), \(\overrightarrow{CB} \) is tangent at point \(B \). Find \(AC \). Reduce any radicals.

Solution: \(\overrightarrow{CB} \) is tangent, so \(\overrightarrow{AB} \bot \overrightarrow{CB} \) and \(\triangle ABC \) a right triangle. Use the Pythagorean Theorem to find \(AC \).

\[
5^2 + 8^2 = AC^2 \\
25 + 64 = AC^2 \\
89 = AC^2 \\
AC = \sqrt{89}
\]

Example 5: Find \(DC \), in \(\bigcirc A \). Round your answer to the nearest hundredth.

Solution: \(DC = AC - AD \)
\[
DC = \sqrt{89} - 5 \approx 4.43
\]

Example 6: Determine if the triangle below is a right triangle.
Solution: Again, use the Pythagorean Theorem. $4\sqrt{10}$ is the longest side, so it will be c.

\[8^2 + 10^2 = \left(4\sqrt{10}\right)^2 \]
\[64 + 100 = 160 \]

$\triangle ABC$ is not a right triangle. From this, we also find that \overline{CB} is not tangent to $\odot A$.

Example 7: Find AB in $\odot A$ and $\odot B$. Reduce the radical.

Solution: $\overline{AD} \perp \overline{DC}$ and $\overline{DC} \perp \overline{CB}$. Draw in \overline{BE}, so $E D C B$ is a rectangle. Use the Pythagorean Theorem to find AB.

\[5^2 + 55^2 = AC^2 \]
\[25 + 3025 = AC^2 \]
\[3050 = AC^2 \]
\[AC = \sqrt{3050} = 5\sqrt{122} \]

Tangent Segments

Theorem 9-2: If two tangent segments are drawn from the same external point, then they are equal.
Example 8: Find the perimeter of $\triangle ABC$.

Solution: $AE = AD$, $EB = BF$, and $CF = CD$. Therefore, the perimeter of $\triangle ABC = 6 + 6 + 4 + 4 + 7 + 7 = 34$.

Example 9: If D and A are the centers and AE is tangent to both circles, find DC.

Solution: $AE \perp DE$ and $AE \perp AC$ and $\triangle ABC \sim \triangle DBE$.

To find DB, use the Pythagorean Theorem.

$$10^2 + 24^2 = DB^2$$
$$100 + 576 = 676$$
$$DB = \sqrt{676} = 26$$

To find BC, use similar triangles. $\frac{5}{10} = \frac{BC}{26} \rightarrow BC = 13$. $DC = AB + BC = 26 + 13 = 39$

Example 10: Algebra Connection Find the value of x.
9.1. Parts of Circles & Tangent Lines

Solution: \(AB \cong CB \) by Theorem 9-2. Set \(AB = CB \) and solve for \(x \).

\[
4x - 9 = 15 \\
4x = 24 \\
x = 6
\]

Know What? Revisited The orange line is a diameter of the smaller circle. Since this line passes through the center of the larger circle (yellow point), it is part of one of its diameters. The “moon” hand is a diameter of the larger circle, but a secant of the smaller circle.

Review Questions

- Questions 1-9 are similar to Example 1.
- Questions 10-12 are similar to Example 2.
- Questions 13-17 are similar to Example 3.
- Questions 18-20 are similar to Example 6.
- Questions 21-26 are similar to Example 4, 5, 7, and 10.
- Questions 27-31 are similar to Example 9.
- Questions 32-37 are similar to Example 8.
- Question 38 and 39 use the proof of Theorem 9-2.
- Question 40 uses Theorem 9-2.

Determine which term best describes each of the following parts of \(\bigcirc P \).
1. KG
2. FH
3. KH
4. E
5. BK
6. CF
7. A
8. JG
9. What is the longest chord in any circle?

Copy each pair of circles. Draw in all common tangents.

Coordinate Geometry Use the graph below to answer the following questions.

10.

11.

12.

13. Find the radius of each circle.
14. Are any circles congruent? How do you know?
15. Find all the common tangents for $⊙B$ and $⊙C$.
16. $⊙C$ and $⊙E$ are externally tangent. What is CE?
17. Find the equation of CE.
Determine whether the given segment is tangent to $\odot K$.

18.

19.

20.

Algebra Connection Find the value of the indicated length(s) in $\odot C$. A and B are points of tangency. Simplify all radicals.

21.
27. Is \(\triangle AEC \sim \triangle BED \)? Why?
28. Find \(CE \).
29. Find \(BE \).
30. Find \(ED \).
31. Find \(BC \) and \(AD \).

\(\odot A \) is inscribed in \(BDFH \).

32. Find the perimeter of \(BDFH \).
33. What type of quadrilateral is \(BDFH \)? How do you know?
34. Draw a circle inscribed in a square. If the radius of the circle is 5, what is the perimeter of the square?
35. Can a circle be inscribed in a rectangle? If so, draw it. If not, explain.
36. Draw a triangle with two sides tangent to a circle, but the third side is not.
37. Can a circle be inscribed in an obtuse triangle? If so, draw it. If not, explain.
38. Fill in the blanks in the proof of Theorem 9-2. Given: \(AB \) and \(CB \) with points of tangency at \(A \) and \(C \). \(AD \) and \(DC \) are radii. Prove: \(AB \cong CB \)

39. Fill in the blanks, using the proof from #38.

a. \(ABCD \) is a __________ (type of quadrilateral).

b. The line that connects the _________ and the external point \(B \) _________ \(\angle ABC \).
40. Points A, B, and C are points of tangency for the three tangent circles. *Explain* why $AT \cong BT \cong CT$.

Review Queue Answers

1. $y = \frac{2}{5}x + 4$
2. $y = -2x + 3$
3. $m = \frac{2 - (-1)}{6 - (-3)} = \frac{3}{9} = \frac{1}{3}$
 - $y = \frac{1}{3}x + b \rightarrow$ plug in $(6, 2)$
 - $2 = \frac{1}{3}(6) + b$
 - $2 = 2 + b \rightarrow b = 0$
 - $y = \frac{1}{3}x$
4. $m_\perp = -3$
 - $11 = -3(-8) + b$
 - $11 = 24 + b \rightarrow b = -13$
 - $y = -3x - 13$
9.2 Properties of Arcs

Learning Objectives

- Define and measure central angles, minor arcs, and major arcs.

Review Queue

1. What kind of triangle is \(\triangle ABC \)?
2. How does \(\overline{BD} \) relate to \(\triangle ABC \)?
3. Find \(m \angle ABC \) and \(m \angle ABD \).
 Round to the nearest tenth. *Use the trig ratios.*
4. Find \(AD \).
5. Find \(AC \).

Know What? The Ferris wheel to the right has equally spaced seats, such that the central angle is 20°. How many seats are on this ride? Why do you think it is important to have equally spaced seats on a Ferris wheel?
Central Angles & Arcs

Recall that a straight angle is 180°. If take two straight angles and put one on top of the other, we would have a circle. This means that a circle has 360°, $180^\circ + 180^\circ$. This also means that a semicircle, or half circle, is 180°.

![Diagram showing a circle with labels A, B, and C]

Arc: A section of the circle.

Semicircle: An arc that measures 180°.

To label an arc, place a curve above the endpoints. You may want to use 3 points to clarify.

\widehat{EFG} and \widehat{EJG} are semicircles
$m\widehat{EFG} = 180^\circ$

Central Angle: The angle formed by two radii and its vertex at the center of the circle.

Minor Arc: An arc that is less than 180°

Major Arc: An arc that is greater than 180°. *Always* use 3 letters to label a major arc.

![Diagram showing a circle with labeled arcs]

The central angle is $\angle BAC$.

The minor arc is \widehat{BC}.

The major arc is \widehat{BDC}.

Every central angle divides a circle into two arcs.

An arc can be measured in degrees or in a linear measure (cm, ft, etc.). In this chapter we will use degree measure. **The measure of the minor arc is the same as the measure of the central angle** that corresponds to it. The measure of the major arc is 360° minus the measure of the minor arc.

Example 1: Find $m\widehat{AB}$ and $m\widehat{ADB}$ in $\odot C$.

![Diagram showing additional points D and C]
9.2. Properties of Arcs

Solution: \(m\overset{\frown}{AB} = m\overset{\frown}{ACB} \). So, \(m\overset{\frown}{AB} = 102^\circ \).

\[
m\overset{\frown}{ADB} = 360^\circ - m\overset{\frown}{AB} = 360^\circ - 102^\circ = 258^\circ
\]

Example 2: Find the measures of the arcs in \(\bigcirc A \). \(EB \) is a diameter.

Solution: Because \(EB \) is a diameter, \(m\overset{\frown}{EAB} = 180^\circ \). Each arc is the same as its corresponding central angle.

\[
m\overset{\frown}{BF} = m\overset{\frown}{FAB} = 60^\circ
\]
\[
m\overset{\frown}{EF} = m\overset{\frown}{EAF} = 120^\circ \rightarrow 180^\circ - 60^\circ
\]
\[
m\overset{\frown}{ED} = m\overset{\frown}{EAD} = 38^\circ \rightarrow 180^\circ - 90^\circ - 52^\circ
\]
\[
m\overset{\frown}{DC} = m\overset{\frown}{DAC} = 90^\circ
\]
\[
m\overset{\frown}{BC} = m\overset{\frown}{BAC} = 52^\circ
\]

Congruent Arcs: Two arcs are congruent if their central angles are congruent.

Example 3: List the congruent arcs in \(\bigcirc C \) below. \(AB \) and \(DE \) are diameters.
Solution: $\angle ACD = \angle ECB$ because they are vertical angles. $\angle DCB = \angle ACE$ because they are also vertical angles.
$\overparen{AD} \cong \overparen{EB}$ and $\overparen{AE} \cong \overparen{DB}$

Example 4: Are the blue arcs congruent? Explain why or why not.

a)

![Diagram with arcs]

Solution:

a) $\overparen{AD} \cong \overparen{BC}$ because they have the same central angle measure and in the same circle.

b) The two arcs have the same measure, but are not congruent because the circles have different radii.

Arc Addition Postulate

Just like the Angle Addition Postulate and the Segment Addition Postulate, there is an Arc Addition Postulate.

Arc Addition Postulate: The measure of the arc formed by two adjacent arcs is the sum of the measures of the two arcs.

![Diagram with arcs]

$$m\overparen{AD} + m\overparen{DB} = m\overparen{ADB}$$
9.2. Properties of Arcs

Example 5: Find the measure of the arcs in \(\bigodot A \). \(\overline{EB} \) is a diameter.

\[\begin{align*}
\text{a) } & m\widehat{FED} \\
\text{b) } & m\widehat{CDF} \\
\text{c) } & m\widehat{DFC}
\end{align*} \]

Solution: Use the Arc Addition Postulate.

\[\begin{align*}
\text{a) } m\widehat{FED} &= m\widehat{FE} + m\widehat{ED} = 120^\circ + 38^\circ = 158^\circ \\
\text{b) } m\widehat{CDF} &= m\widehat{CD} + m\widehat{DE} + m\widehat{EF} = 90^\circ + 38^\circ + 120^\circ = 248^\circ \\
\text{c) } m\widehat{DFC} &= 38^\circ + 120^\circ + 60^\circ + 52^\circ = 270^\circ
\end{align*} \]

Example 6: Algebra Connection Find the value of \(x \) for \(\bigodot C \) below.

\[\begin{align*}
\text{Solution:} \\
m\widehat{AB} + m\widehat{AD} + m\widehat{DB} &= 360^\circ \\
(4x + 15)^\circ + 92^\circ + (6x + 3)^\circ &= 360^\circ \\
10x + 110^\circ &= 360^\circ \\
10x &= 250^\circ \\
x &= 25^\circ
\end{align*} \]

Know What? Revisited Because the seats are 20° apart, there will be \(\frac{360^\circ}{20^\circ} = 18 \) seats. It is important to have the seats evenly spaced for the balance of the Ferris wheel.

Review Questions

- Questions 1-6 use the definition of minor arc, major arc, and semicircle.
• Question 7 is similar to Example 3.
• Questions 8 and 9 are similar to Example 5.
• Questions 10-15 are similar to Example 1.
• Questions 16-18 are similar to Example 4.
• Questions 19-26 are similar to Example 2 and 5.
• Questions 27-29 are similar to Example 6.
• Question 30 is a challenge.

Determine if the arcs below are a minor arc, major arc, or semicircle of $\odot G$. \overline{EB} is a diameter.

1. \widehat{AB}
2. \widehat{ABD}
3. \widehat{BCE}
4. \widehat{CAE}
5. \widehat{ABC}
6. \widehat{EAB}
7. Are there any congruent arcs? If so, list them.
8. If $m\widehat{BC} = 48^\circ$, find $m\widehat{CD}$.
9. Using #8, find $m\widehat{CAE}$.

Find the measure of the minor arc and the major arc in each circle below.

10.
11.
Determine if the blue arcs are congruent. If so, state why.
Find the measure of the indicated arcs or central angles in $\odot A$. DG is a diameter.

19. \widehat{DE}
20. \widehat{DC}
21. \widehat{GAB}
22. \widehat{FG}
23. \widehat{EDB}
24. \widehat{EAB}
25. \widehat{DCF}
26. \widehat{DBE}

Algebra Connection Find the measure of x in $\odot P$.

27. $\widehat{CAB} = 155^\circ$
28. $\widehat{CDB} = 65^\circ$, $\widehat{DAB} = (2x - 19)^\circ$
30. **Challenge** What can you conclude about $\bigodot A$ and $\bigodot B$?

Review Queue Answers

1. isosceles
2. BD is the angle bisector of $\angle ABC$ and the perpendicular bisector of AC.
3. $m\angle ABC = 40^\circ, m\angle ABD = 25^\circ$
4. $\cos 70^\circ = \frac{AD}{9} \rightarrow AD = 9 \cdot \cos 70^\circ = 3.1$
5. $AC = 2 \cdot AD = 2 \cdot 3.1 = 6.2$
9.3 Properties of Chords

Learning Objectives

• Find the lengths of chords in a circle.
• Discover properties of chords and arcs.

Review Queue

1. Draw a chord in a circle.
2. Draw a diameter in the circle from #1. Is a diameter a chord?
3. \(\triangle ABC \) is an equilateral triangle in \(\bigcirc A \). Find \(mBC \) and \(mBDC \).

4. \(\triangle ABC \) and \(\triangle ADE \) are equilateral triangles in \(\bigcirc A \). List a pair of congruent arcs and chords.

Know What? To the right is the Gran Teatro Falla, in Cadiz, Andalucía, Spain. Notice the five windows, \(A - E \). \(\bigcirc A \cong \bigcirc E \) and \(\bigcirc B \cong \bigcirc C \cong \bigcirc D \). Each window is topped with a \(240^\circ \) arc. The gold chord in each circle connects the rectangular portion of the window to the circle. Which chords are congruent?
Recall from the first section, a chord is a line segment whose endpoints are on a circle. A diameter is the longest chord in a circle.

Congruent Chords & Congruent Arcs

From #4 in the Review Queue above, we noticed that $BC \cong DE$ and $\hat{BC} \cong \hat{DE}$.

Theorem 9-3: In the same circle or congruent circles, minor arcs are congruent if and only if their corresponding chords are congruent.

![Diagram showing congruent chords and arcs](image)

In both of these pictures, $BE \cong CD$ and $\hat{BE} \cong \hat{CD}$.

In the second circle, $\triangle BAE \cong \triangle CAD$ by SAS.

Example 1: Use $\bigcirc A$ to answer the following.

![Diagram](image)

a) If $m\hat{BD} = 125^\circ$, find $m\hat{CD}$.

b) If $m\hat{BC} = 80^\circ$, find $m\hat{CD}$.

Solution:

a) $BD = CD$, which means the arcs are equal too. $m\hat{CD} = 125^\circ$.

b) $m\hat{CD} \cong m\hat{BD}$ because $BD = CD$.

\[
m\hat{BC} + m\hat{CD} + m\hat{BD} = 360^\circ
\]
\[
80^\circ + 2m\hat{CD} = 360^\circ
\]
\[
2m\hat{CD} = 280^\circ
\]
\[
m\hat{CD} = 140^\circ
\]
Investigation 9-2: Perpendicular Bisector of a Chord

Tools Needed: paper, pencil, compass, ruler

1. Draw a circle. Label the center \(A \).

2. Draw a chord. Label it \(BC \).

3. Find the midpoint of \(BC \) using a ruler. Label it \(D \).

4. Connect \(A \) and \(D \) to form a diameter. How does \(AD \) relate to \(BC \)?

Theorem 9-4: The perpendicular bisector of a chord is also a diameter.
If $\overline{AD} \perp \overline{BC}$ and $\overline{BD} \cong \overline{DC}$ then \overline{EF} is a diameter.

If $\overline{EF} \perp \overline{BC}$, then $\overline{BD} \cong \overline{DC}$ and $\widehat{BE} \cong \widehat{EC}$.

Theorem 9-5: If a diameter is perpendicular to a chord, then the diameter bisects the chord and its corresponding arc.

Example 2: Find the value of x and y.

![Circle with diameter perpendicular to chord](image)

Solution: The diameter perpendicular to the chord. From Theorem 9-5, $x = 6$ and $y = 75^\circ$.

Example 3: Is the converse of Theorem 9-4 true?

![Circle with diameter](image)

Solution: The converse of Theorem 9-4 would be: *A diameter is also the perpendicular bisector of a chord.* This is not true, a diameter cannot always be a perpendicular bisector to every chord. See the picture.

Example 4: Algebra Connection Find the value of x and y.

![Circle with algebraic expressions](image)

Solution: The diameter is perpendicular to the chord, which means it bisects the chord and the arc. Set up an equation for x and y.

\[
(3x - 4)^\circ = (5x - 18)^\circ \\
\quad \quad \quad \quad \quad \quad \quad \quad \quad y + 4 = 2y + 1 \\
14^\circ = 2x \quad \quad \quad \quad \quad \quad \quad \quad \quad 3 = y \\
7^\circ = x
\]
Equidistant Congruent Chords

Investigation 9-3: Properties of Congruent Chords
Tools Needed: pencil, paper, compass, ruler

1. Draw a circle with a radius of 2 inches and two chords that are both 3 inches. Label like the picture to the right. *This diagram is drawn* to scale.

 ![Diagram of a circle with two chords](image)

2. From the center, draw the perpendicular segment to \(AB \) and \(CD \). You can use Investigation 3-2

 ![Diagram with perpendicular segments drawn](image)

3. Erase the arc marks and lines beyond the points of intersection, leaving \(FE \) and \(EG \). Find the measure of these segments. What do you notice?

 Theorem 9-6: In the same circle or congruent circles, two chords are congruent if and only if they are equidistant from the center.

 ![Diagram with equidistant chords](image)

The shortest distance from any point to a line is the perpendicular line between them.

If \(FE = EG \) and \(EF \perp EG \), then \(AB \) and \(CD \) are equidistant to the center and \(AB \cong CD \).

Example 5: Algebra Connection Find the value of \(x \).
9.3. Properties of Chords

Solution: Because the distance from the center to the chords is congruent and perpendicular to the chords, the chords are equal.

\[6x - 7 = 35 \]
\[6x = 42 \]
\[x = 7 \]

Example 6: \(BD = 12 \) and \(AC = 3 \) in \(\bigodot A \). Find the radius.

Solution: First find the radius. \(\overline{AB} \) is a radius, so we can use the right triangle \(\triangle ABC \), so \(\overline{AB} \) is the hypotenuse. From Theorem 9-5, \(BC = 6 \).

\[3^2 + 6^2 = AB^2 \]
\[9 + 36 = AB^2 \]
\[AB = \sqrt{45} = 3\sqrt{5} \]

Example 7: Find \(m\widehat{BD} \) from Example 6.

Solution: First, find the corresponding central angle, \(\angle BAD \). We can find \(m\angle BAC \) using the tangent ratio. Then, multiply \(m\angle BAC \) by 2 for \(m\angle BAD \) and \(m\widehat{BD} \).

\[\tan^{-1} \left(\frac{6}{3} \right) = m\angle BAC \]
\[m\angle BAC \approx 63.43^\circ \]
\[m\angle BAD \approx 2 \cdot 63.43^\circ \approx 126.86^\circ \approx m\widehat{BD} \]

Know What? Revisited In the picture, the chords from \(\bigodot A \) and \(\bigodot E \) are congruent and the chords from \(\bigodot B \), \(\bigodot C \), and \(\bigodot D \) are also congruent. We know this from Theorem 9-3.
Review Questions

• Questions 1-3 use the theorems from this section and similar to Example 3.
• Questions 4-10 use the definitions and theorems from this section.
• Questions 11-16 are similar to Example 1 and 2.
• Questions 17-25 are similar to Examples 2, 4, 5, and 6.
• Questions 26 and 27 are similar to Example 7.
• Questions 28-30 use the theorems from this section.

1. Two chords in a circle are perpendicular and congruent. Does one of them have to be a diameter? Why or why not?
2. Write the converse of Theorem 9-5. Is it true? If not, draw a counterexample.
3. Write the original and converse statements from Theorem 9-3 and Theorem 9-6.

Fill in the blanks.

4. \(\overline{AB} \cong \overline{DF} \)
5. \(\overline{AC} \cong \overline{____} \)
6. \(\overline{DJ} \cong \overline{____} \)
7. \(\overline{____} \cong \overline{EJ} \)
8. \(\angle AGH \cong \angle____ \)
9. \(\angle DGF \cong \angle____ \)
10. List all the congruent radii in \(\odot G \).

Find the value of the indicated arc in \(\odot A \).

11. \(m\overparen{BC} \)

12. \(m\overparen{BD} \)
9.3. Properties of Chords

13. $m\hat{BC}$

14. $m\hat{BD}$

15. $m\hat{BD}$

16. $m\hat{BD}$
Algebra Connection Find the value of x and/or y.

17.
\[\text{Diagram with angles and segments.} \]

18.
\[\text{Diagram with angles and segments.} \]

19.
\[\text{Diagram with angles and segments.} \]

20. $AB = 32$

21.
\[\text{Diagram with angles and segments.} \]
25. \(AB = 20 \)

26. Find \(m\hat{AB} \) in Question 20. Round your answer to the nearest tenth of a degree.

27. Find \(m\hat{AB} \) in Question 25. Round your answer to the nearest tenth of a degree.

In problems 28-30, what can you conclude about the picture? State a theorem that justifies your answer. You may assume that \(A \) is the center of the circle.

28.
Review Queue Answers

1 & 2. Answers will vary

3. $m\overset{ˆ}{BC} = 60^\circ, m\overset{ˆ}{BDC} = 300^\circ$

4. $\overset{\frown}{BC} \cong \overset{\frown}{DE}$ and $\overset{\frown}{BC} \cong \overset{\frown}{DE}$
Learning Objectives

• Find the measure of inscribed angles and the arcs they intercept.

Review Queue

We are going to use #14 from the homework in the previous section.

1. What is the measure of each angle in the triangle? How do you know?
2. What do you know about the three arcs?
3. What is the measure of each arc?

Know What? The closest you can get to the White House are the walking trails on the far right. You want to get as close as you can (on the trail) to the fence to take a picture (you were not allowed to walk on the grass). Where else can you take a picture from to get the same frame of the White House? Your line of sight in the camera is marked in the picture as the grey lines.
Inscribed Angles

In addition to central angles, we will now learn about inscribed angles in circles.

Inscribed Angle: An angle with its vertex on the circle and sides are chords.

Intercepted Arc: The arc that is inside the inscribed angle and endpoints are on the angle.

The vertex of an inscribed angle can be anywhere on the circle as long as its sides intersect the circle to form an intercepted arc.

Investigation 9-4: Measuring an Inscribed Angle

Tools Needed: pencil, paper, compass, ruler, protractor

1. Draw three circles with three different inscribed angles. Try to make all the angles different sizes.

2. Using your ruler, draw in the corresponding central angle for each angle and label each set of endpoints.
9.4. Inscribed Angles

3. Using your protractor measure the six angles and determine if there is a relationship between the central angle, the inscribed angle, and the intercepted arc.

\[
m_\angle LAM = \quad m_\angle NBP = \quad m_\angle QCR = \\
\widehat{LM} = \quad \widehat{NP} = \quad \widehat{QR} = \\
\angle LKM = \quad \angle NOP = \quad \angle QSR = \\
\]

Inscribed Angle Theorem: The measure of an inscribed angle is half the measure of its intercepted arc.

Example 1: Find \(\widehat{DC}\) and \(\angle ADB\).

Solution: From the Inscribed Angle Theorem:

\[
\widehat{DC} = 2 \cdot 45^\circ = 90^\circ \\
\angle ADB = \frac{1}{2} \cdot 76^\circ = 38^\circ
\]
Solution: The intercepted arc for both angles is \(\hat{AB} \). Therefore,

\[
m\angle ADB = \frac{1}{2} \cdot 124^\circ = 62^\circ
\]

\[
m\angle ACB = \frac{1}{2} \cdot 124^\circ = 62^\circ
\]

This example leads us to our next theorem.

Theorem 9-8: Inscribed angles that intercept the same arc are congruent.

![Diagram](image1)

\(\angle ADB \) and \(\angle ACB \) intercept \(\hat{AB} \), so \(m\angle ADB = m\angle ACB \).

\(\angle DAC \) and \(\angle DBC \) intercept \(\hat{DC} \), so \(m\angle DAC = m\angle DBC \).

Example 3: Find \(m\angle DAB \) in \(\bigcirc C \).

Solution: \(C \) is the center, so \(\overline{DB} \) is a diameter. \(\angle DAB \) endpoints are on the diameter, so the central angle is \(180^\circ \).

\[
m\angle DAB = \frac{1}{2} \cdot 180^\circ = 90^\circ
\]

Theorem 9-9: An angle intercepts a semicircle if and only if it is a right angle.

![Diagram](image2)
\(\angle DAB \) intercepts a semicircle, so \(m \angle DAB = 90^\circ \).

\(\angle DAB \) is a right angle, so \(\overarc{DB} \) is a semicircle.

Anytime a right angle is inscribed in a circle, the endpoints of the angle are the endpoints of a diameter and the diameter is the hypotenuse.

Example 4: Find \(m \angle PMN \), \(m \hat{P}N \), \(m \angle MNP \), and \(m \angle LNP \).

Solution:

\[
m \angle PMN = m \angle PLN = 68^\circ \quad \text{by Theorem 9 - 8.}
\]

\[
m \hat{P}N = 2 \cdot 68^\circ = 136^\circ \quad \text{from the Inscribed Angle Theorem.}
\]

\[
m \angle MNP = 90^\circ \quad \text{by Theorem 9 - 9.}
\]

\[
m \angle LNP = \frac{1}{2} \cdot 92^\circ = 46^\circ \quad \text{from the Inscribed Angle Theorem.}
\]

Inscribed Quadrilaterals

Inscribed Polygon: A polygon where every vertex is on a circle.

Investigation 9-5: Inscribing Quadrilaterals

Tools Needed: pencil, paper, compass, ruler, colored pencils, scissors

1. Draw a circle. Mark the center point \(A \).
2. Place four points on the circle. Connect them to form a quadrilateral. Color in the 4 angles.

3. Cut out the quadrilateral. Then cut the diagonal \overline{CE}, making two triangles.

4. Line up $\angle B$ and $\angle D$ so that they are next to each other. What do you notice?

By cutting the quadrilateral in half, we are able to show that $\angle B$ and $\angle D$ form a linear pair when they are placed next to each other, making $\angle B$ and $\angle D$ supplementary.

Theorem 9-10: A quadrilateral is inscribed in a circle if and only if the opposite angles are supplementary.

If $ABCD$ is inscribed in $\bigcirc E$, then $m\angle A + m\angle C = 180^\circ$ and $m\angle B + m\angle D = 180^\circ$.

If $m\angle A + m\angle C = 180^\circ$ and $m\angle B + m\angle D = 180^\circ$, then $ABCD$ is inscribed in $\bigcirc E$.

Example 5: Find the value of the missing variables.

a)
9.4. Inscribed Angles

Solution:

a)
\[x + 80^\circ = 180^\circ \quad y + 71^\circ = 180^\circ \]
\[x = 100^\circ \quad y = 109^\circ \]

b)
\[z + 93^\circ = 180^\circ \quad x = \frac{1}{2}(58^\circ + 106^\circ) \quad y + 82^\circ = 180^\circ \]
\[z = 87^\circ \quad x = 82^\circ \quad y = 98^\circ \]

Example 6: Algebra Connection Find \(x \) and \(y \) in the picture below.

Solution:

\[(7x + 1)^\circ + 105^\circ = 180^\circ \quad (4y + 14)^\circ + (7y + 1)^\circ = 180^\circ \]
\[7x + 106^\circ = 180^\circ \quad 11y + 15^\circ = 180^\circ \]
\[7x = 84^\circ \quad 11y = 165^\circ \]
\[x = 12^\circ \quad y = 15^\circ \]

Know What? Revisited You can take the picture from anywhere on the semicircular walking path, the frame will be the same.
Review Questions

- Questions 1-8 use the vocabulary and theorems learned in this section.
- Questions 9-27 are similar to Examples 1-5.
- Questions 28-33 are similar to Example 6.
- Question 34 is a proof of the Inscribed Angle Theorem.

Fill in the blanks.

1. A(n) ________ polygon has all its vertices on a circle.
2. An inscribed angle is ________ the measure of the intercepted arc.
3. A central angle is __________ the measure of the intercepted arc.
4. An angle inscribed in a ______________ is 90°.
5. Two inscribed angles that intercept the same arc are ______________.
6. The ______________ angles of an inscribed quadrilateral are ______________.
7. The sides of an inscribed angle are ____________.
8. Draw inscribed angle $\angle JKL$ in $\bigcirc M$. Then draw central angle $\angle JML$. How do the two angles relate?

Quadrilateral $ABCD$ is inscribed in $\bigcirc E$. Find:

9. $m\angle DBC$
10. $m\widehat{BC}$
11. $m\widehat{AB}$
12. $m\angle ACD$
13. $m\angle ADC$
14. $m\angle ACB$

Quadrilateral $ABCD$ is inscribed in $\bigcirc E$. Find:
15. \(m \angle A \)

16. \(m \angle B \)

17. \(m \angle C \)

18. \(m \angle D \)

Find the value of \(x \) and/or \(y \) in \(\odot A \).
Algebra Connection Solve for x.
34. Fill in the blanks of the Inscribed Angle Theorem proof.
Given: Inscribed \(\angle ABC \) and diameter \(\overline{BD} \)

Prove: \(m\angle ABC = \frac{1}{2}m\widehat{AC} \)

Table 9.2:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inscribed (\angle ABC) and diameter (\overline{BD}) (m\angle ABE = x^{\circ}) and (m\angle CBE = y^{\circ})</td>
<td>All radii are congruent</td>
</tr>
<tr>
<td>2. (x^{\circ} + y^{\circ} = m\angle ABC)</td>
<td>Definition of an isosceles triangle</td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5. (m\angle EAB = x^{\circ}) and (m\angle ECB = y^{\circ})</td>
<td></td>
</tr>
<tr>
<td>6. (m\angle AED = 2x^{\circ}) and (m\angle CED = 2y^{\circ})</td>
<td>Arc Addition Postulate</td>
</tr>
<tr>
<td>7. (m\widehat{AD} = 2x^{\circ}) and (m\widehat{DC} = 2y^{\circ})</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>9. (m\widehat{AC} = 2x^{\circ} + 2y^{\circ})</td>
<td>Distributive PoE</td>
</tr>
<tr>
<td>10.</td>
<td></td>
</tr>
<tr>
<td>11. (m\widehat{AC} = 2m\angle ABC)</td>
<td></td>
</tr>
<tr>
<td>12. (m\angle ABC = \frac{1}{2}m\widehat{AC})</td>
<td></td>
</tr>
</tbody>
</table>

Review Queue Answers

1. \(60^{\circ} \), it is an equilateral triangle.
2. They are congruent because the chords are congruent.
3. \(\frac{360^{\circ}}{3} = 120^{\circ} \)
9.5 Angles of Chords, Secants, and Tangents

Learning Objectives

- Find the measures of angles formed by chords, secants, and tangents.

Review Queue

1. What is \(m\angle OML \) and \(m\angle OPL \)? How do you know?
2. Find \(m\angle MLP \).
3. Find \(m\angle MNP \).

Know What? The sun’s rays hit the Earth such that the tangent rays determine when daytime and night time are. If the arc that is exposed to sunlight is 178°, what is the angle at which the sun’s rays hit the earth \((x^\circ) \)?

Angle on a Circle

When an angle is on a circle, the vertex is on the edge of the circle. One type of angle on a circle is the inscribed angle, from the previous section. Another type of angle on a circle is one formed by a tangent and a chord.

Investigation 9-6: The Measure of an Angle formed by a Tangent and a Chord

Tools Needed: pencil, paper, ruler, compass, protractor

1. Draw \(\odot A \) with chord \(\overrightarrow{BC} \) and tangent line \(\overrightarrow{ED} \) with point of tangency \(C \).
2. Draw in central angle $\angle CAB$. Find $m\angle CAB$ and $m\angle BCE$.

3. Find $m\widehat{BC}$. How does the measure of this arc relate to $m\angle BCE$?

Theorem 9-11: The measure of an angle formed by a chord and a tangent that intersect on the circle is half the measure of the intercepted arc.

$$m\angle DBA = \frac{1}{2} m\widehat{AB}$$

We now know that there are two types of angles that are half the measure of the intercepted arc; an *inscribed angle* and an *angle formed by a chord and a tangent*.

Example 1: Find:

a) $m\angle BAD$
b) $m\widehat{AEB}$

Solution: Use Theorem 9-11.

a) $m\angle BAD = \frac{1}{2} m\widehat{AB} = \frac{1}{2} \cdot 124^\circ = 62^\circ$

b) $m\widehat{AEB} = 2 \cdot m\angle DAB = 2 \cdot 133^\circ = 266^\circ$

Example 2: Find a, b, and c.

Solution:

$50^\circ + 45^\circ + m\angle a = 180^\circ$ straight angle
$m\angle a = 85^\circ$

$m\angle b = \frac{1}{2} \cdot m\widehat{AC}$
$m\widehat{AC} = 2 \cdot m\angle EAC = 2 \cdot 45^\circ = 90^\circ$
$m\angle b = \frac{1}{2} \cdot 90^\circ = 45^\circ$

$85^\circ + 45^\circ + m\angle c = 180^\circ$ Triangle Sum Theorem
$m\angle c = 50^\circ$

From this example, we see that Theorem 9-8 is true for angles formed by a tangent and chord with the vertex on the circle. *If two angles, with their vertices on the circle, intercept the same arc then the angles are congruent.*
Angles inside a Circle

An angle is inside a circle when the vertex anywhere inside the circle, but not on the center.

Investigation 9-7: Find the Measure of an Angle inside a Circle

Tools Needed: pencil, paper, compass, ruler, protractor, colored pencils (optional)

1. Draw $\bigcirc A$ with chord \overline{BC} and \overline{DE}. Label the point of intersection P.

2. Draw central angles $\angle DAB$ and $\angle CAE$. Use colored pencils, if desired.

3. Find $m\angle DPB$, $m\angle DAB$, and $m\angle CAE$. Find $m\hat{DB}$ and $m\hat{CE}$.

4. Find $\frac{m\hat{DB} + m\hat{CE}}{2}$.

5. What do you notice?

Theorem 9-12: The measure of the angle formed by two chords that intersect inside a circle is the average of the measure of the intercepted arcs.

Example 3: Find x.

a)
9.5. Angles of Chords, Secants, and Tangents

Solution: Use Theorem 9-12 to write an equation.

a) \(x = \frac{129^\circ + 71^\circ}{2} = \frac{200^\circ}{2} = 100^\circ \)

b) \(40^\circ = \frac{52^\circ + x}{2} \)
\(80^\circ = 52^\circ + x \)
\(28^\circ = x \)

c) \(x \) is supplementary to the angle that the average of the given intercepted arcs, \(y \).

\[
 y = \frac{19^\circ + 107^\circ}{2} = \frac{126^\circ}{2} = 63^\circ \quad x + 63^\circ = 180^\circ; \quad x = 117^\circ
\]

Angles outside a Circle

An angle is outside a circle if the vertex of the angle is outside the circle and the sides are tangents or secants. The possibilities are: an angle formed by two tangents, an angle formed by a tangent and a secant, and an angle formed by two secants.

Investigation 9-8: Find the Measure of an Angle outside a Circle

Tools Needed: pencil, paper, ruler, compass, protractor, colored pencils (optional)
1. Draw three circles and label the centers A, B, and C. In $⨀A$ draw two secant rays with the same endpoint. In $⨀B$, draw two tangent rays with the same endpoint. In $⨀C$, draw a tangent ray and a secant ray with the same endpoint. Label the points like the pictures below.

2. Draw in all the central angles. Using a protractor, measure the central angles and find the measures of each intercepted arc.

3. Find $m\angle EDF$, $m\angle MLN$, and $m\angle RQS$.
4. Find $\frac{m\hat{E}F - m\hat{GH}}{2}$, $\frac{m\hat{MPN} - m\hat{MN}}{2}$, and $\frac{m\hat{RS} - m\hat{RT}}{2}$. What do you notice?

Theorem 9-13: The measure of an angle formed by two secants, two tangents, or a secant and a tangent from a point outside the circle is half the difference of the measures of the intercepted arcs.

$$m\angle D = \frac{m\hat{E}F - m\hat{GH}}{2}$$
$$m\angle L = \frac{m\hat{MPN} - m\hat{MN}}{2}$$
$$m\angle Q = \frac{m\hat{RS} - m\hat{RT}}{2}$$

Example 4: Find the measure of x.

a)
9.5. Angles of Chords, Secants, and Tangents

Solution: For all of the above problems we can use Theorem 9-13.

a) \[x = \frac{125^\circ - 27^\circ}{2} = \frac{98^\circ}{2} = 49^\circ \]
b) \[40^\circ \] is not the intercepted arc. The intercepted arc is \(120^\circ \), \((360^\circ - 200^\circ - 40^\circ)\). \[x = \frac{200^\circ - 120^\circ}{2} = \frac{80^\circ}{2} = 40^\circ \]
c) Find the other intercepted arc, \(360^\circ - 265^\circ = 95^\circ \). \[x = \frac{265^\circ - 95^\circ}{2} = \frac{170^\circ}{2} = 85^\circ \]

Know What? Revisited From Theorem 9-13, we know \[x = \frac{182^\circ - 178^\circ}{2} = \frac{4^\circ}{2} = 2^\circ \].

Review Questions

- Questions 1-3 use the definitions of tangent and secant lines.
- Questions 4-7 use the definition and theorems learned in this section.
- Questions 8-25 are similar to Examples 1-4.
- Questions 26 and 27 are similar to Example 4, but also a challenge.
- Questions 28 and 29 are fill-in-the-blank proofs of Theorems 9-12 and 9-13.

1. Draw two secants that intersect:
 a. inside a circle.
 b. on a circle.
 c. outside a circle.

2. Can two tangent lines intersect inside a circle? Why or why not?

3. Draw a tangent and a secant that intersect:
 a. on a circle.
 b. outside a circle.
Fill in the blanks.

4. If the vertex of an angle is on the ___________ of a circle, then its measure is ___________ to the intercepted arc.
5. If the vertex of an angle is ___________ a circle, then its measure is the average of the ___________-______ arcs.
6. If the vertex of an angle is ______ a circle, then its measure is ____________ the intercepted arc.
7. If the vertex of an angle is __________ a circle, then its measure is ___________ the difference of the intercepted arcs.

For questions 8-25, find the value of the missing variable(s).
9.5. Angles of Chords, Secants, and Tangents

13. \(141^\circ\)

14. \(117^\circ\)

15. \(30^\circ\)

16. \(46^\circ\)

17. \(66^\circ, 42^\circ\)

18. \(147^\circ\)
23. $y \neq 60^\circ$
Challenge Solve for x.

25. \[
\begin{align*}
(x^\circ + 28)^\circ & = 60^\circ \\
(5x + 10)^\circ & = 30^\circ \\
(3x + 4)^\circ & = 30^\circ \\
\end{align*}
\]

26. \[
\begin{align*}
(6x - 42)^\circ & = (3x + 4)^\circ \\
\end{align*}
\]

27. \[
\begin{align*}
\end{align*}
\]

28. Fill in the blanks of the proof for Theorem 9-12.

Given: Intersecting chords \overline{AC} and \overline{BD}. **Prove:** $m\angle a = \frac{1}{2} \left(m\widehat{DC} + m\widehat{AB} \right)$

Table 9.3:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intersecting chords \overline{AC} and \overline{BD}.</td>
<td>Construction</td>
</tr>
<tr>
<td>2. Draw \overline{BC}</td>
<td></td>
</tr>
</tbody>
</table>

3. $m\angle DBC = \frac{1}{2} m\widehat{DC}$
4. $m\angle ACB = \frac{1}{2} m\widehat{AB}$
5. $m\angle a = \frac{1}{2} m\widehat{DC} + \frac{1}{2} m\widehat{AB}$

Given: Secant rays \(\overrightarrow{AB} \) and \(\overrightarrow{AC} \)
Prove: \(m\angle a = \frac{1}{2} \left(m\widehat{BC} - m\widehat{DE} \right) \)

TABLE 9.4:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intersecting secants (\overrightarrow{AB}) and (\overrightarrow{AC}).</td>
<td></td>
</tr>
<tr>
<td>2. Draw (\overrightarrow{BE}).</td>
<td>Construction</td>
</tr>
<tr>
<td>3. (m\angle BEC = \frac{1}{2} m\widehat{BC}) (m\angle DBE = \frac{1}{2} m\widehat{DE})</td>
<td></td>
</tr>
<tr>
<td>5. (m\angle a + m\angle DBE = m\angle BEC)</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>7.</td>
<td>Substitution</td>
</tr>
<tr>
<td>8. (m\angle a = \frac{1}{2} \left(m\widehat{BC} - m\widehat{DE} \right))</td>
<td></td>
</tr>
</tbody>
</table>

Review Queue Answers

1. \(m\angle OML = m\angle OPL = 90^\circ \) because a tangent line and a radius drawn to the point of tangency are perpendicular.
2. \(165^\circ + m\angle OML + m\angle OPL + m\angle MLP = 360^\circ \)
 \(165^\circ + 90^\circ + 90^\circ + m\angle MLP = 360^\circ \)
 \(m\angle MLP = 15^\circ \)
3. \(m\widehat{NP} = 360^\circ - 165^\circ = 195^\circ \)
9.6 Segments of Chords, Secants, and Tangents

Learning Objectives

- Find the lengths of segments within circles.

Review Queue

1. What do you know about $m\angle DAC$ and $m\angle DBC$? Why?
2. What do you know about $m\angle AED$ and $m\angle BEC$? Why?
3. Is $\triangle AED \sim \triangle BEC$? How do you know?
4. If $AE = 8$, $ED = 7$, and $BE = 6$, find EC.

Know What? At a particular time during its orbit, the moon is 238,857 miles from Beijing, China. On the same line, Yukon is 12,451 miles from Beijing. Drawing another line from the moon to Cape Horn we see that Jakarta, Indonesia is collinear. If the distance from the moon to Jakarta is 240,128 miles, what is the distance from Cape Horn to Jakarta?

Segments from Chords

In the Review Queue above, we have two chords that intersect inside a circle. The two triangles are similar, making the sides in each triangle proportional.
Theorem 9-14: If two chords intersect inside a circle so that one is divided into segments of length \(a \) and \(b \) and the other into segments of length \(c \) and \(d \) then \(ab = cd \).

\[ab = cd \]

Example 1: Find \(x \) in each diagram below.

a)

<table>
<thead>
<tr>
<th>12</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

\[12 \cdot 8 = 10 \cdot x \]
\[96 = 10x \]
\[9.6 = x \]

b)

<table>
<thead>
<tr>
<th>9</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

\[x \cdot 15 = 5 \cdot 9 \]
\[15x = 45 \]
\[x = 3 \]

Example 2: Algebra Connection Solve for \(x \).

a)
9.6. Segments of Chords, Secants, and Tangents

a) \(8 \cdot 24 = (3x + 1) \cdot 12 \)
\[192 = 36x + 12 \]
\[180 = 36x \]
\[5 = x \]

b) \((x - 5)21 = (x - 9)24 \)
\[21x - 105 = 24x - 216 \]
\[111 = 3x \]
\[37 = x \]

Segments from Secants

In addition to forming an angle outside of a circle, the circle can divide the secants into segments that are proportional with each other.

Theorem 9-15: If two secants are drawn from a common point outside a circle and the segments are labeled as below, then \(a(a + b) = c(c + d) \).

The product of the outer segment and the whole of one secant equals the product of the outer segment and the whole of the other secant.
\[a(a + b) = c(c + d) \]

Example 3: Find the value of the missing variable.

a)

\[18 \cdot (18 + x) = 16 \cdot (16 + 24) \]
\[324 + 18x = 256 + 384 \]
\[18x = 316 \]
\[x = 17 \frac{2}{3} \]

b)

\[x \cdot (x + x) = 9 \cdot 32 \]
\[2x^2 = 288 \]
\[x^2 = 144 \]
\[x = 12, \quad x \neq -12 \quad (\text{length is not negative}) \]

Segments from Secants and Tangents

If a tangent and secant meet at a common point outside a circle, the segments created have a similar relationship to that of two secant rays in Example 3.

Theorem 9-16: If a tangent and a secant are drawn from a common point outside the circle (and the segments are labeled like the picture below), then \(a^2 = b(b + c) \).
The product of the outside segment of the secant and the whole is equal to the square of the tangent.

\[a^2 = b(b + c) \]

Example 4: Find the value of the missing segment.

a)

Solution: Use Theorem 9-16.

\[x^2 = 4(4 + 12) \]

\[x^2 = 4 \cdot 16 = 64 \]

\[x = 8 \]

b)

\[20^2 = y(y + 30) \]

\[400 = y^2 + 30y \]

\[0 = y^2 + 30y - 400 \]

\[0 = (y + 40)(y - 10) \]

\[y = -40, 10 \]

When you have to factor a quadratic equation to find an answer, **always eliminate the negative answer** because length is never negative.

Example 5: Ishmael found a broken piece of a CD in his car. He places a ruler across two points on the rim, and the length of the chord is 9.5 cm. The distance from the midpoint of this chord to the nearest point on the rim is 1.75 cm. Find the diameter of the CD.
Solution: Think of this as two chords intersecting each other. If we were to extend the 1.75 cm segment, it would be a diameter. So, if we find \(x \), in the diagram to the left, and add it to 1.75 cm, we would find the diameter.

\[
4.25 \cdot 4.25 = 1.75 \cdot x \\
18.0625 = 1.75x \\
x \approx 10.3 \text{ cm}, \text{ making the diameter 12 cm, which is the actual diameter of a CD.}
\]

Know What? Revisited The given information is to the left. Let’s set up an equation using Theorem 9-15.

\[
238857 \cdot 251308 = 240128(240128 + x) \\
60026674956 = 57661456380 + 240128x \\
2365218572 = 240128x \\
x \approx 9849.8 \text{ miles}
\]

Review Questions

- Questions 1-25 are similar to Examples 1, 3, and 4.
Fill in the blanks for each problem below. Then, solve for the missing segment.

1. \[_4 = _x \]

2. \[3(_ + _) = 2(2 + 7) \]

3. \[20x = _] \]

4. \[x \cdot _ = 8(_ + _) \]

5. \[x \]
6. \[_ = _ (4 + 5) \]

7. \[10^2 = x (_ + _) \]

Find \(x \) in each diagram below. Simplify any radicals.
25. **Error Analysis** Describe and correct the error in finding y.

\[10 \cdot 10 = y \cdot 15y \]
\[100 = 15y^2 \]
\[\frac{20}{3} = y^2 \]
\[\frac{2 \sqrt{15}}{3} = y \quad \text{← } y \text{ in not correct} \]

Algebra Connection Find the value of x.

26.

27.

28.
29. Suzie found a piece of a broken plate. She places a ruler across two points on the rim, and the length of the chord is 6 inches. The distance from the midpoint of this chord to the nearest point on the rim is 1 inch. Find the diameter of the plate.

30. Fill in the blanks of the proof of Theorem 9-14.

Given: Intersecting chords \overline{AC} and \overline{BE}. Prove: $ab = cd$

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intersecting chords \overline{AC} and \overline{BE} with segments a, b, c, and d.</td>
<td>Theorem 9-8</td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3. $\triangle ADE \sim \triangle BDC$</td>
<td>Corresponding parts of similar triangles are proportional</td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5. $ab = cd$</td>
<td></td>
</tr>
</tbody>
</table>

Given: Secants \overline{PR} and \overline{RT}. Prove: $a(a + b) = c(c + d)$

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Secants \overline{PR} and \overline{RT} with segments a, b, c, and d.</td>
<td>given</td>
</tr>
<tr>
<td>2. $\angle R \cong \angle R$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>3. $\triangle QPS \cong \triangle STQ$</td>
<td>Theorem 9-8</td>
</tr>
<tr>
<td>4. $\triangle RPS \sim \triangle RTQ$</td>
<td>AA Similarity Postulate</td>
</tr>
<tr>
<td>5. $\frac{a}{c+d} = \frac{c}{a+b}$</td>
<td>Corresponding parts of similar triangles are proportional</td>
</tr>
<tr>
<td>6. $a(a + b) = c(c + d)$</td>
<td>Cross multiplication</td>
</tr>
</tbody>
</table>
Review Queue Answers

1. $m\angle DAC = m\angle DBC$ by Theorem 9-8, they are inscribed angles and intercept the same arc.
2. $m\angle AED = m\angle BEC$ by the Vertical Angles Theorem.
3. Yes, by AA Similarity Postulate.
4. \[\frac{8}{6} = \frac{7}{EC} \]
 \[8 \cdot EC = 42 \]
 \[EC = \frac{21}{4} = 5.25 \]
9.7 Extension: Writing and Graphing the Equations of Circles

Learning Objectives

- Graph a circle.
- Find the equation of a circle in the \(x - y \) plane.
- Find the radius and center, given the equation of a circle and vice versa.
- Find the equation of a circle, given the center and a point on the circle.

Graphing a Circle in the Coordinate Plane

Recall that the definition of a circle is the set of all points that are the same distance from the center. This definition can be used to find an equation of a circle in the coordinate plane.

Let’s start with the circle centered at (0, 0). If \((x, y) \) is a point on the circle, then the distance from the center to this point would be the radius, \(r \). \(x \) is the horizontal distance \(y \) is the vertical distance. This forms a right triangle. From the Pythagorean Theorem, the equation of a circle, \textit{centered at the origin} is \(x^2 + y^2 = r^2 \).

Example 1: Graph \(x^2 + y^2 = 9 \).

Solution: The center is \((0, 0)\). It’s radius is the square root of 9, or 3. Plot the center, and then go out 3 units in every direction and connect them to form a circle.
The center does not always have to be on (0, 0). If it is not, then we label the center \((h, k)\) and would use the distance formula to find the length of the radius.

\[
r = \sqrt{(x-h)^2 + (y-k)^2}
\]

If you square both sides of this equation, then we would have the standard equation of a circle.

Standard Equation of a Circle: The standard equation of a circle with center \((h, k)\) and radius \(r\) is \(r^2 = (x-h)^2 + (y-k)^2\).

Example 2: Find the center and radius of the following circles.

a) \((x-3)^2 + (y-1)^2 = 25\)

b) \((x+2)^2 + (y-5)^2 = 49\)

Solution:

a) Rewrite the equation as \((x-3)^2 + (y-1)^2 = 5^2\). The center is \((3,1)\) and \(r = 5\).

b) Rewrite the equation as \((x-(-2))^2 + (y-5)^2 = 7^2\). The center is \((-2,5)\) and \(r = 7\).

When finding the center of a circle always take the opposite sign of what the value is in the equation.

Example 3: Find the equation of the circle below.
Solution: First locate the center. Draw in the horizontal and vertical diameters to see where they intersect.

From this, we see that the center is (-3, 3). If we count the units from the center to the circle on either of these diameters, we find \(r = 6 \). Plugging this into the equation of a circle, we get: \((x - (-3))^2 + (y - 3)^2 = 6^2\) or \((x + 3)^2 + (y - 3)^2 = 36\).

Finding the Equation of a Circle

Example 4: Determine if the following points are on \((x + 1)^2 + (y - 5)^2 = 50\).

a) (8, -3)
b) (-2, -2)

Solution: Plug in the points for \(x\) and \(y\) in \((x + 1)^2 + (y - 5)^2 = 50\).

a) \((8 + 1)^2 + (-3 - 5)^2 = 50\)
\(9^2 + (-8)^2 = 50\)
\(81 + 64 \neq 50\)

(8, -3) is not on the circle

b) \((-2 + 1)^2 + (-2 - 5)^2 = 50\)
\((-1)^2 + (-7)^2 = 50\)
\(1 + 49 = 50\)

(-2, -2) is on the circle

Example 5: Find the equation of the circle with center (4, -1) and passes through (-1, 2).
Solution: First plug in the center to the standard equation.

\[(x - 4)^2 + (y - (-1))^2 = r^2\]
\[(x - 4)^2 + (y + 1)^2 = r^2\]

Now, plug in (-1, 2) for x and y and solve for r.

\[(-1 - 4)^2 + (2 + 1)^2 = r^2\]
\[(-5)^2 + (3)^2 = r^2\]
\[25 + 9 = r^2\]
\[34 = r^2\]

Substituting in 34 for \(r^2\), the equation is \((x - 4)^2 + (y + 1)^2 = 34\).

Review Questions

- Questions 1-4 are similar to Examples 1 and 2.
- Questions 5-8 are similar to Example 3.
- Questions 9-11 are similar to Example 4.
- Questions 12-15 are similar to Example 5.

Find the center and radius of each circle. Then, graph each circle.

1. \((x + 5)^2 + (y - 3)^2 = 16\)
2. \(x^2 + (y + 8)^2 = 4\)
3. \((x - 7)^2 + (y - 10)^2 = 20\)
4. \((x + 2)^2 + y^2 = 8\)

Find the equation of the circles below.
Find the equation of the circle with the given center and point on the circle.

9. center: (2, 3), point: (-4, -1)
10. center: (10, 0), point: (5, 2)
11. center: (-3, 8), point: (7, -2)
12. center: (6, -6), point: (-9, 4)
9.8 Chapter 9 Review

Keywords & Theorems

Parts of Circles Tangent Lines

- Circle
- Center
- Radius
- Chord
- Diameter
- Secant
- Tangent
- Point of Tangency
- Congruent Circles
- Concentric Circles
- Externally Tangent Circles
- Internally Tangent Circles
- Common Internal Tangent
- Common External Tangent
- Tangent to a Circle Theorem
- Theorem 9-2

Properties of Arcs

- Central Angle
- Arc
- Semicircle
- Minor Arc
- Major Arc
- Congruent Arcs
- Arc Addition Postulate

Properties of Chords

- Theorem 9-3
- Theorem 9-4
- Theorem 9-5
- Theorem 9-6

Inscribed Angles

- Inscribed Angle
- Intercepted Arc
- Inscribed Angle Theorem
• Theorem 9-8
• Theorem 9-9
• Inscribed Polygon
• Theorem 9-10

Angles from Chords, Secants and Tangents

• Theorem 9-11
• Theorem 9-12
• Theorem 9-13

Segments from Secants and Tangents

• Theorem 9-14
• Theorem 9-15
• Theorem 9-16

Extension: Equations of Circles

• Standard Equation of a Circle

Vocabulary

Match the description with the correct label.

1. minor arc - A. $\hat{C}D$
2. chord - B. \overline{AD}
3. tangent line - C. \overrightarrow{CB}
4. central angle - D. $\angle EF$
5. secant - E. \overline{EF}
6. radius - F. \overline{ED}
7. inscribed angle - G. $\angle BAD$
8. center - H. $\angle BCD$
9. major arc - I. \hat{BD}
10. point of tangency - J. \overline{BCD}
Texas Instruments Resources

In the CK-12 Texas Instruments Geometry FlexBook® resource, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9694.
Keywords: Define, write theorems, and/or draw a diagram for each word below.

1st Section: Parts of Circles Tangent Lines

Circle

Radius
Diameter
Tangent
Congruent Circles
Concentric Circles
Externally Tangent Circles
Internally Tangent Circles
Common Internal Tangent

Common External Tangent
Tangent to a Circle Theorem
Theorem 9-2
Center
Chord
Secant
Point of Tangency

Homework:

2nd Section: Properties of Arcs

Central Angle

![Diagram](image1)

Arc

Semicircle

Minor Arc

![Diagram](image2)

Major Arc

Congruent Arcs

Arc Addition Postulate

Homework:

3rd Section: Properties of Chords

Theorem 9-3

![Diagram](image3)

Theorem 9-4

Theorem 9-5

566
Theorem 9-6

Homework:

4th Section: Inscribed Angles

Inscribed Angle
Intercepted Arc
Inscribed Angle Theorem
Theorem 9-8

Theorem 9-9

Inscribed Polygon
Theorem 9-10

Homework:

5th Section: Angles from Chords, Secants and Tangents

Theorem 9-11
Homework:

6th Section: Segments from Secants and Tangents
Theorem 9-16

Homework:

Extension: Equations of Circles

Standard Equation of a Circle

Homework:
CHAPTER 10

Perimeter and Area

Chapter Outline

10.1 TRIANGLES AND PARALLELOGRAMS
10.2 TRAPEZOIDS, RHOMBI, AND KITES
10.3 AREAS OF SIMILAR POLYGONS
10.4 CIRCUMFERENCE AND ARC LENGTH
10.5 AREAS OF CIRCLES AND SECTORS
10.6 CHAPTER 10 REVIEW
10.7 STUDY GUIDE

Now that we have explored triangles, quadrilaterals, polygons, and circles, we are going to learn how to find the perimeter and area of each.
10.1 Triangles and Parallelograms

Learning Objectives

- Understand the basic concepts of area.
- Use formulas to find the area of triangles and parallelograms.

Review Queue

1. Define perimeter and area, in your own words.
2. Solve the equations below. Simplify any radicals.
 a. \(x^2 = 121\)
 b. \(4x + 6 = 80\)
 c. \(x^2 - 6x + 8 = 0\)
 d. \(\frac{1}{2}x - 3 = 5\)
 e. \(x^2 + 2x - 15 = 0\)
 f. \(x^2 - x - 12 = 0\)

Know What? Ed’s parents are getting him a new king bed. Upon further research, Ed discovered there are two types of king beds, and Eastern (or standard) King and a California King. The Eastern King has 76” × 80” dimensions, while the California King is 72” × 84” (both dimensions are width × length). Which bed has a larger area to lie on?

Areas and Perimeters of Squares and Rectangles

Perimeter: The distance around a shape.

The perimeter of any figure must have a unit of measurement attached to it. If no specific units are given (feet, inches, centimeters, etc), write “units.”

Example 1: Find the perimeter of the figure to the left.

Solution: Here, we can use the grid as our units. Count around the figure to find the perimeter.
10.1. Triangles and Parallelograms

\[5 + 1 + 1 + 5 + 1 + 3 + 1 + 1 + 1 + 2 + 4 + 7 = 34 \text{ units} \]

You are probably familiar with the area of squares and rectangles from a previous math class. Recall that you must always establish a unit of measure for area. Area is always measured in square units, square feet \((ft.^2)\), square inches \((in.^2)\), square centimeters \((cm.^2)\), etc. If no specific units are given, write “units\(^2\)”.

Example 2: Find the area of the figure from Example 1.

Solution: Count the number of squares within the figure. If we start on the left and count each column. \(5 + 6 + 1 + 4 + 3 + 4 + 4 = 27 \text{ units}^2\)

Area of a Rectangle: \(A = bh\), where \(b\) is the base (width) and \(h\) is the height (length).

Example 3: Find the area and perimeter of a rectangle with sides 4 cm by 9 cm.

Solution: The perimeter is \(4 + 9 + 4 + 9 = 26 \text{ cm}\). The area is \(A = 9 \cdot 4 = 36 \text{ cm}^2\).

Perimeter of a Rectangle: \(P = 2b + 2h\).

If a rectangle is a square, with sides of length \(s\), the formulas are as follows:

Perimeter of a Square: \(P_{\text{square}} = 2s + 2s = 4s\)
Area of a Square: \(A_{\text{square}} = s \cdot s = s^2 \)

Example 4: The area of a square is 75 \(\text{in}^2 \). Find the perimeter.

Solution: To find the perimeter, we need to find the length of the sides.

\[
A = s^2 = 75 \text{in}^2 \\
\therefore s = \sqrt{75} = 5\sqrt{3} \text{in}
\]

From this, \(P = 4 \left(5\sqrt{3}\right) = 20\sqrt{3} \text{in}. \)

Area Postulates

Congruent Areas Postulate: If two figures are congruent, they have the same area.

Example 5: Draw two different rectangles with an area of 36 \(\text{cm}^2 \).

Solution: Think of all the different factors of 36. These can all be dimensions of the different rectangles.

Other possibilities could be \(6 \times 6, 2 \times 18, \) and \(1 \times 36. \)

Example 5 shows two rectangles with the same area and are not congruent. This tells us that the converse of the Congruent Areas Postulate is not true.

Area Addition Postulate: If a figure is composed of two or more parts that do not overlap each other, then the area of the figure is the sum of the areas of the parts.

Example 6: Find the area of the figure below. You may assume all sides are perpendicular.
Solution: Split the shape into two rectangles and find the area of each.

\[A_{\text{top rectangle}} = 6 \cdot 2 = 12 \text{ ft}^2 \]
\[A_{\text{bottom square}} = 3 \cdot 3 = 9 \text{ ft}^2 \]

The total area is \(12 + 9 = 21 \text{ ft}^2\).

Area of a Parallelogram

Recall that a parallelogram is a quadrilateral whose opposite sides are parallel.

To find the area of a parallelogram, make it into a rectangle.
From this, we see that the area of a parallelogram is the same as the area of a rectangle.

Area of a Parallelogram: The area of a parallelogram is $A = bh$.

The height of a parallelogram is always perpendicular to the base. This means that the sides are *not* the height.

![Parallelogram Diagram](image)

Example 7: Find the area of the parallelogram.

![Parallelogram with dimensions](image)

Solution: $A = 15 \cdot 8 = 120 \text{ in}^2$

Example 8: If the area of a parallelogram is 56 units2 and the base is 4 units, what is the height?

Solution: Solve for the height in $A = bh$.

\[
56 = 4h \\
14 = h
\]

Area of a Triangle

![Triangle Diagram](image)

If we take parallelogram and cut it in half, along a diagonal, we would have two congruent triangles. The formula for the area of a triangle is half the area of a parallelogram.

Area of a Triangle: $A = \frac{1}{2} bh$ or $A = \frac{bh}{2}$.

575
Example 9: Find the area of the triangle.

Solution: To find the area, we need to find the height of the triangle. We are given the two sides of the small right triangle, where the hypotenuse is also the short side of the obtuse triangle.

\[3^2 + h^2 = 5^2 \]
\[9 + h^2 = 25 \]
\[h^2 = 16 \]
\[h = 4 \]

\[A = \frac{1}{2}(4)(7) = 14 \text{ units}^2 \]

Example 10: Find the perimeter of the triangle in Example 9.

Solution: To find the perimeter, we need to find the longest side of the obtuse triangle. If we used the black lines in the picture, we would see that the longest side is also the hypotenuse of the right triangle with legs 4 and 10.

\[4^2 + 10^2 = c^2 \]
\[16 + 100 = c^2 \]
\[c = \sqrt{116} \approx 10.77 \]

The perimeter is \(7 + 5 + 10.77 = 22.77 \text{ units} \)

Example 11: Find the area of the figure below.

\[\text{Area} = \]
Solution: Divide the figure into a triangle and a rectangle with a small rectangle cut out of the lower right-hand corner.

\[A = A_{\text{top triangle}} + A_{\text{rectangle}} - A_{\text{small triangle}} \]
\[A = \left(\frac{1}{2} \cdot 6 \cdot 9 \right) + (9 \cdot 15) + \left(\frac{1}{2} \cdot 3 \cdot 6 \right) \]
\[A = 27 + 135 + 9 \]
\[A = 171 \text{ units}^2 \]

Know What? Revisited The area of an Eastern King is 6080 \text{ in}^2 and the California King is 6048 \text{ in}^2.

Review Questions

- Questions 1-12 are similar to Examples 3-5, 7-9.
- Questions 13-18 are similar to Examples 9 and 10.
- Questions 19-24 are similar to Examples 7 and 9.
- Questions 25-30 are similar to Examples 6 and 11.
- Questions 31-36 use the formula for the area of a triangle.

1. Find the area and perimeter of a square with sides of length 12 in.
2. Find the area and perimeter of a rectangle with height of 9 cm and base of 16 cm.
3. Find the area of a parallelogram with height of 20 m and base of 18 m.
4. Find the area and perimeter of a rectangle if the height is 8 and the base is 14.
5. Find the area and perimeter of a square if the sides are 18 ft.
6. If the area of a square is 81 \text{ ft}^2, find the perimeter.
7. If the perimeter of a square is 24 in, find the area.
8. Find the area of a triangle with base of length 28 cm and height of 15 cm.
9. What is the height of a triangle with area 144 \(\text{m}^2 \) and a base of 24 m?
10. The perimeter of a rectangle is 32. Find two different dimensions that the rectangle could be.
11. Draw two different rectangles that have an area of 90 \(mm^2 \).
12. Write the converse of the Congruent Areas Postulate. Determine if it is a true statement. If not, write a counterexample. If it is true, explain why.

Use the triangle to answer the following questions.

![Triangle diagram](image)

13. Find the height of the triangle by using the geometric mean.
14. Find the perimeter.
15. Find the area.

Use the triangle to answer the following questions.

![Triangle diagram](image)

16. Find the height of the triangle.
17. Find the perimeter.
18. Find the area.

Find the area of the following shapes.

![Shapes diagram](image)
25.
 a. Divide the shape into two triangles and one rectangle.
 b. Find the area of the two triangles and rectangle.
 c. Find the area of the entire shape.

26.
 a. Divide the shape into two rectangles and one triangle.
 b. Find the area of the two rectangles and triangle.
 c. Find the area of the entire shape (you will need to subtract the area of the small triangle in the lower right-hand corner).

Use the picture below for questions 27-30. Both figures are squares.
27. Find the area of the outer square.
28. Find the area of one grey triangle.
29. Find the area of all four grey triangles.
30. Find the area of the inner square.

In questions 31-36 we are going to derive a formula for the area of an equilateral triangle.

31. What kind of triangle is $\triangle ABD$? Find AD and BD.
32. Find the area of $\triangle ABC$.
33. If each side is x, what is AD and BD?
34. If each side is x, find the area of $\triangle ABC$.
35. Using your formula from #34, find the area of an equilateral triangle with 12 inch sides.
36. Using your formula from #34, find the area of an equilateral triangle with 5 inch sides.

Review Queue Answers

1. *Possible Answers*

 Perimeter: The distance around a shape.

 Area: The space inside a shape.

2. (a) $x = \pm 11$
 (b) $x = 18.5$
 (c) $x = 4, 2$
 (d) $x = 16$
 (e) $x = 3, -5$
 (f) $x = 4, -3$
Learning Objectives

- Derive and use the area formulas for trapezoids, rhombi, and kites.

Review Queue

Find the area of the shaded regions in the figures below.

1. $ABCD$ is a square.

2. $ABCD$ is a square.

3. $ABCD$ is a square.

Know What? The Brazilian flag is to the right. The flag has dimensions of 20×14 (units vary depending on the size, so we will not use any here). The vertices of the yellow rhombus in the middle are 1.7 units from the midpoint of each side.
Find the area of the rhombus (including the circle). *Do not round your answer.*

Area of a Trapezoid

Recall that a trapezoid is a quadrilateral with one pair of parallel sides. The lengths of the parallel sides are the bases and the perpendicular distance between the parallel sides is the height of the trapezoid.

To find the area of the trapezoid, make a copy of the trapezoid and then rotate the copy 180°. Now, this is a parallelogram with height h and base $b_1 + b_2$. The area of this shape is $A = h(b_1 + b_2)$.

Because the area of this parallelogram is two congruent trapezoids, the area of one trapezoid would be $A = \frac{1}{2}h(b_1 + b_2)$.

Area of a Trapezoid: $A = \frac{1}{2}h(b_1 + b_2)$

h is *always* perpendicular to the bases.
You could also say the area of a trapezoid is the average of the bases times the height.

Example 1: Find the area of the trapezoids below.

a)

![Trapezoid](image1)

Solution:

\[A = \frac{1}{2} (11)(14 + 8) \]
\[A = \frac{1}{2} (11)(22) \]
\[A = 121 \text{ units}^2 \]

b)

![Trapezoid](image2)

Solution:

\[A = \frac{1}{2} (9)(15 + 23) \]
\[A = \frac{1}{2} (9)(38) \]
\[A = 171 \text{ units}^2 \]

Example 2: Find the perimeter and area of the trapezoid.

![Trapezoid](image3)

Solution: Even though we are not told the length of the second base, we can find it using special right triangles. Both triangles at the ends of this trapezoid are isosceles right triangles, so the hypotenuses are \(4\sqrt{2}\) and the other legs are of length 4.

\[P = 8 + 4\sqrt{2} + 16 + 4\sqrt{2} \]
\[P = 24 + 8\sqrt{2} \approx 35.3 \text{ units} \]

\[A = \frac{1}{2} (4)(8 + 16) \]
\[A = 48 \text{ units}^2 \]
Area of a Rhombus and Kite

Recall that a rhombus is an equilateral quadrilateral and a kite has adjacent congruent sides. Both of these quadrilaterals have perpendicular diagonals, which is how we are going to find their areas.

Notice that the diagonals divide each quadrilateral into 4 triangles. If we move the two triangles on the bottom of each quadrilateral so that they match up with the triangles above the horizontal diagonal, we would have two rectangles.

So, the height of these rectangles is half of one of the diagonals and the base is the length of the other diagonal.

Area of a Rhombus: \(A = \frac{1}{2}d_1d_2 \)
The area is half the product of the diagonals.

Area of a Kite: \(A = \frac{1}{2}d_1d_2 \)

Example 3: Find the perimeter and area of the rhombi below.

a)
Solution: In a rhombus, all four triangles created by the diagonals are congruent.

a) To find the perimeter, you must find the length of each side, which would be the hypotenuse of one of the four triangles. Use the Pythagorean Theorem.

\[12^2 + 8^2 = \text{side}^2 \quad A = \frac{1}{2} \cdot 16 \cdot 24 \]

\[144 + 64 = \text{side}^2 \quad A = 192 \]

\[\text{side} = \sqrt{208} = 4 \sqrt{13} \]

\[P = 4 \left(4 \sqrt{13} \right) = 16 \sqrt{13} \]

b) Here, each triangle is a 30-60-90 triangle with a hypotenuse of 14. From the special right triangle ratios the short leg is 7 and the long leg is \(7 \sqrt{3}\).

\[P = 4 \cdot 14 = 56 \quad A = \frac{1}{2} \cdot 14 \cdot 14 \sqrt{3} = 98 \sqrt{3} \]

Example 4: Find the perimeter and area of the kites below.

a)
Solution: In a kite, there are two pairs of congruent triangles. Use the Pythagorean Theorem in both problems to find the length of sides or diagonals.

a)

<table>
<thead>
<tr>
<th>Shorter sides of kite</th>
<th>Longer sides of kite</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6^2 + 5^2 = s_1^2)</td>
<td>(12^2 + 5^2 = s_2^2)</td>
</tr>
<tr>
<td>(36 + 25 = s_1^2)</td>
<td>(144 + 25 = s_2^2)</td>
</tr>
<tr>
<td>(s_1 = \sqrt{61})</td>
<td>(s_2 = \sqrt{169} = 13)</td>
</tr>
</tbody>
</table>

\[P = 2 \left(\sqrt{61} \right) + 2(13) = 2 \sqrt{61} + 26 \approx 41.6 \]

\[A = \frac{1}{2}(10)(18) = 90 \]

b)

<table>
<thead>
<tr>
<th>Smaller diagonal portion</th>
<th>Larger diagonal portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(20^2 + d_i^2 = 25^2)</td>
<td>(20^2 + d_l^2 = 35^2)</td>
</tr>
<tr>
<td>(d_i^2 = 225)</td>
<td>(d_l^2 = 825)</td>
</tr>
<tr>
<td>(d_i = 15)</td>
<td>(d_l = 5 \sqrt{33})</td>
</tr>
</tbody>
</table>

\[A = \frac{1}{2} \left(15 + 5 \sqrt{33} \right)(40) \approx 874.5 \]

\[P = 2(25) + 2(35) = 120 \]

Example 5: The vertices of a quadrilateral are \(A(2, 8), B(7, 9), C(11, 2), \) and \(D(3, 3)\). Show \(ABCD\) is a kite and find its area.

Solution: After plotting the points, it looks like a kite. \(AB = AD\) and \(BC = DC\). The diagonals are perpendicular if the slopes are opposite signs and flipped.

\[m_{AC} = \frac{2 - 8}{11 - 2} = \frac{-6}{9} = -\frac{2}{3} \]

\[m_{BD} = \frac{9 - 3}{7 - 3} = \frac{6}{4} = \frac{3}{2} \]
The diagonals are perpendicular, so \(ABCD\) is a kite. To find the area, we need to find the length of the diagonals.

\[
d_1 = \sqrt{(2 - 11)^2 + (8 - 2)^2} = \sqrt{(-9)^2 + 6^2} = \sqrt{81 + 36} = \sqrt{117} = 3\sqrt{13}
\]

\[
d_2 = \sqrt{(7 - 3)^2 + (9 - 3)^2} = \sqrt{4^2 + 6^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13}
\]

Plug these lengths into the area formula for a kite. \(A = \frac{1}{2} \left(3\sqrt{13} \right) \left(2\sqrt{13} \right) = 39 \text{ units}^2\)

Know What? Revisited To find the area of the rhombus, we need to find the length of the diagonals. One diagonal is \(20 - 1.7 - 1.7 = 16.6\) and the other is \(14 - 1.7 - 1.7 = 10.6\). The area is \(A = \frac{1}{2}(16.6)(10.6) = 87.98 \text{ units}^2\).

Review Questions

- Question 1 uses the formula of the area of a kite and rhombus.
- Questions 2-16 are similar to Examples 1-4.
- Questions 17-23 are similar to Example 5.
- Questions 24-27 use the area formula for a kite and rhombus and factors.
- Questions 28-30 are similar to Example 4.

1. Do you think all rhombi and kites with the same diagonal lengths have the same area? *Explain* your answer.

Find the area of the following shapes. *Round your answers to the nearest hundredth.*
Find the area and perimeter of the following shapes. \textit{Round your answers to the nearest hundredth.}
Quadrilateral $ABCD$ has vertices $A(-2,0), B(0,2), C(4,2)$, and $D(0,-2)$. Leave your answers in simplest radical form.

17. Find the slopes of \overline{AB} and \overline{DC}. What type of quadrilateral is this? *Plotting the points will help you find the answer.*

18. Find the slope of \overline{AD}. Is it perpendicular to \overline{AB} and \overline{DC}?

19. Find $\overline{AB}, \overline{AD}$, and \overline{DC}.

20. Use #19 to find the area of the shape.

Quadrilateral $EFGH$ has vertices $E(2,-1), F(6,-4), G(2,-7)$, and $H(-2,-4)$.

589
21. Find the slopes of all the sides and diagonals. What type of quadrilateral is this? *Plotting the points will help you find the answer.*
22. Find \(HF \) and \(EG \).
23. Use #22 to find the area of the shape.

For Questions 24 and 25, the area of a rhombus is 32 \(\text{units}^2 \).

24. What would the product of the diagonals have to be for the area to be 32 \(\text{units}^2 \)?
25. List two possibilities for the length of the diagonals, based on your answer from #24.

For Questions 26 and 27, the area of a kite is 54 \(\text{units}^2 \).

26. What would the product of the diagonals have to be for the area to be 54 \(\text{units}^2 \)?
27. List two possibilities for the length of the diagonals, based on your answer from #26.

Sherry designed the logo for a new company, made up of 3 congruent kites.

28. What are the lengths of the diagonals for one kite?
29. Find the area of one kite.
30. Find the area of the entire logo.

![Diagram of a kite logo with dimensions](image)

Review Queue Answers

1. \(A = 9(8) + \left[\frac{1}{2}(9)(8) \right] = 72 + 36 = 108 \text{ units}^2 \)
2. \(A = \frac{1}{2}(6)(12)2 = 72 \text{ units}^2 \)
3. \(A = 4 \left[\frac{1}{2}(6)(3) \right] = 36 \text{ units}^2 \)
10.3 Areas of Similar Polygons

Learning Objectives

- Understand the relationship between the scale factor of similar polygons and their areas.
- Apply scale factors to solve problems about areas of similar polygons.

Review Queue

1. Are two squares similar? Are two rectangles?

2. Find the scale factor of the sides of the similar shapes. Both figures are squares.
3. Find the area of each square.
4. Find the ratio of the smaller square’s area to the larger square’s area. Reduce it.

Know What? One use of scale factors and areas is scale drawings. This technique takes a small object, like the handprint to the right, divides it up into smaller squares and then blows up the individual squares. In this Know What? you are going to make a scale drawing of your own hand. Trace your hand on a piece of paper. Then, divide your hand into 9 squares, like the one to the right, $2 \text{ in} \times 2 \text{ in}$. Take a larger piece of paper and blow up each square to be $6 \text{ in} \times 6 \text{ in}$ (you will need at least an 18 in square piece of paper). Once you have your $6 \text{ in} \times 6 \text{ in}$ squares drawn, use the proportions and area to draw in your enlarged handprint.
Areas of Similar Polygons

In Chapter 7, we learned about similar polygons. Polygons are similar when the corresponding angles are equal and the corresponding sides are in the same proportion.

Example 1: The two rectangles below are similar. Find the scale factor and the ratio of the perimeters.

![Example 1 Diagram]

Solution: The scale factor is \(\frac{16}{24} = \frac{2}{3} \).

\[
P_{\text{small}} = 2(10) + 2(16) = 52 \text{ units} \\
P_{\text{large}} = 2(15) + 2(24) = 78 \text{ units}
\]

The ratio of the perimeters is \(\frac{52}{78} = \frac{2}{3} \).

The ratio of the perimeters is the same as the scale factor. In fact, the ratio of any part of two similar shapes (diagonals, medians, midsegments, altitudes, etc.) is the same as the scale factor.

Example 2: Find the area of each rectangle from Example 1. Then, find the ratio of the areas.

Solution:

\[
A_{\text{small}} = 10 \cdot 16 = 160 \text{ units}^2 \\
A_{\text{large}} = 15 \cdot 24 = 360 \text{ units}^2
\]

The ratio of the areas would be \(\frac{160}{360} = \frac{4}{9} \).

The ratio of the sides, or scale factor was \(\frac{2}{3} \) and the ratio of the areas is \(\frac{4}{9} \). Notice that the ratio of the areas is the *square* of the scale factor.

Area of Similar Polygons Theorem: If the scale factor of the sides of two similar polygons is \(\frac{m}{n} \), then the ratio of the areas would be \(\left(\frac{m}{n} \right)^2 \).

If the scale factor is \(\frac{m}{n} \), then the ratio of the areas is \(\left(\frac{m}{n} \right)^2 \).
Example 3: Find the ratio of the areas of the rhombi below. The rhombi are similar.

\[\left(\frac{3}{5} \right)^2 = \frac{9}{25} \]

Example 4: Two trapezoids are similar. If the scale factor is \(\frac{3}{4} \) and the area of the smaller trapezoid is 81 \(cm^2 \), what is the area of the larger trapezoid?

Solution: First, the ratio of the areas would be \(\left(\frac{3}{4} \right)^2 = \frac{9}{16} \). Now, we need the area of the larger trapezoid. To find this, set up a proportion using the area ratio.

\[\frac{9}{16} = \frac{81}{A} \rightarrow 9A = 1296 \]

\[A = 144 \, cm^2 \]

Example 5: Two triangles are similar. The ratio of the areas is \(\frac{25}{64} \). What is the scale factor?

Solution: The scale factor is \(\sqrt{\frac{25}{64}} = \frac{5}{8} \).

Example 6: Using the ratios from Example 5, find the length of the base of the smaller triangle if the length of the base of the larger triangle is 24 units.

Solution: Set up a proportion using the scale factor.

\[\frac{5}{8} = \frac{b}{24} \rightarrow 8b = 120 \]

\[b = 15 \, units \]

Know What? Revisited You should end up with an 18 \(in \times 18 \, in \) drawing of your handprint.

Review Questions

- Questions 1-4 are similar to Example 3.
- Questions 5-8 are similar to Example 5.
- Questions 9-18 are similar to Examples 1-3, and 5.
- Questions 19-22 are similar to Examples 4 and 6.
- Questions 23-26 are similar to Examples 5 and 6.
10.3. Areas of Similar Polygons

Determine the ratio of the areas, given the ratio of the sides of a polygon.

1. \(\frac{3}{4} \)
2. \(\frac{7}{4} \)
3. \(\frac{11}{6} \)
4. \(\frac{8}{11} \)

Determine the ratio of the sides of a polygon, given the ratio of the areas.

5. \(\frac{1}{36} \)
6. \(\frac{4}{81} \)
7. \(\frac{49}{9} \)
8. \(\frac{25}{144} \)

This is an equilateral triangle made up of 4 congruent equilateral triangles.

9. What is the ratio of the areas of the large triangle to one of the small triangles?

![Equilateral Triangle](image)

10. What is the scale factor of large to small triangle?
11. If the area of the large triangle is 20 units\(^2\), what is the area of a small triangle?
12. If the length of the altitude of a small triangle is \(2\sqrt{3}\) units, find the perimeter of the large triangle.

![Square](image)

13. Find the perimeter of the large square and the blue square.
14. Find the scale factor of the blue square and large square.
15. Find the ratio of their perimeters.
16. Find the area of the blue and large squares.
17. Find the ratio of their areas.
18. Find the length of the diagonals of the blue and large squares. Put them into a ratio. Which ratio is this the same as?
19. Two rectangles are similar with a scale factor of \(\frac{4}{7}\). If the area of the larger rectangle is 294 in\(^2\), find the area of the smaller rectangle.
20. Two triangles are similar with a scale factor of \(\frac{1}{3}\). If the area of the smaller triangle is 22 ft\(^2\), find the area of the larger triangle.
21. The ratio of the areas of two similar squares is \(\frac{16}{81}\). If the length of a side of the smaller square is 24 units, find the length of a side in the larger square.
22. The ratio of the areas of two right triangles is \(\frac{4}{9}\). If the length of the hypotenuse of the larger triangle is 48 units, find the length of the smaller triangle’s hypotenuse.
Questions 23-26 build off of each other. You may assume the problems are connected.

23. Two similar rhombi have areas of 72 \(\text{units}^2 \) and 162 \(\text{units}^2 \). Find the ratio of the areas.
24. Find the scale factor.
25. The diagonals in these rhombi are congruent. Find the length of the diagonals and the sides.
26. What type of rhombi are these quadrilaterals?

Review Queue Answers

1. Two squares are always similar. Two rectangles can be similar as long as the sides are in the same proportion.
2. \(\frac{10}{25} = \frac{2}{5} \)
3. \(A_{\text{small}} = 100, A_{\text{large}} = 625 \)
10.4 Circumference and Arc Length

Learning Objectives

- Find the circumference of a circle.
- Define the length of an arc and find arc length.

Review Queue

1. Find a central angle in that intercepts \widehat{CE}

![Diagram of a circle with radii CA, AD, BD, and BE intersecting at A, D, and E]

2. Find an inscribed angle that intercepts \widehat{CE}.
3. How many degrees are in a circle? Find $m\angle ECD$.
4. If $m\angle CEB = 26^\circ$, find $m\angle CD$ and $m\angle CBE$.

Know What? A typical large pizza has a diameter of 14 inches and is cut into 8 pieces. Think of the crust as the circumference of the pizza. Find the length of the crust for the entire pizza. Then, find the length of the crust for one piece of pizza if the entire pizza is cut into 8 pieces.

![Pizza with crust highlighted]

Circumference of a Circle

Circumference: The distance around a circle.
The circumference can also be called the perimeter of a circle. However, we use the term circumference for circles because they are round. In order to find the circumference of a circle, we need to explore π (pi).

Investigation 10-1: Finding π (pi)

Tools Needed: paper, pencil, compass, ruler, string, and scissors

1. Draw three circles with radii of 2 in, 3 in, and 4 in. Label the centers of each A, B, and C.
2. Draw in the diameters and determine their lengths.

![Diagram of circles with diameters drawn](image)

3. Take the string and outline each circle with it. Cut the string so that it perfectly outlines the circle. Then, lay it out straight and measure it in inches. Round your answer to the nearest $\frac{1}{8}$-inch. Repeat this for the other two circles.

![String outline of circle measurement](image)

4. Find $\frac{\text{circumference}}{\text{diameter}}$ for each circle. Record your answers to the nearest thousandth.

You should see that $\frac{\text{circumference}}{\text{diameter}}$ approaches 3.14159... We call this number π, the Greek letter “pi.” When finding the circumference and area of circles, we must use π.

π, or “pi”: The ratio of the circumference of a circle to its diameter. It is approximately equal to 3.14159265358979323846...

To see more digits of π, go to http://www.eveandersson.com/pi/digits/.

From Investigation 10-1, we found that $\frac{\text{circumference}}{\text{diameter}} = \pi$. Let’s solve for the circumference, C.

$$\frac{C}{d} = \pi$$

$$C = \pi d$$

We can also say $C = 2\pi r$ because $d = 2r$.

Circumference Formula: $C = \pi d$ or $C = 2\pi r$
10.4. Circumference and Arc Length

\[d = 2r \]

Example 1: Find the circumference of a circle with a radius of 7 cm.

Solution: Plug the radius into the formula.

\[C = 2\pi(7) = 14\pi \approx 44 \text{ cm} \]

Example 2: The circumference of a circle is \(64\pi \). Find the diameter.

Solution: Again, you can plug in what you know into the circumference formula and solve for \(d \).

\[64\pi = \pi d \]
\[64 = d \]

Example 3: A circle is inscribed in a square with 10 in. sides. What is the circumference of the circle? Leave your answer in terms of \(\pi \).

Solution: From the picture, we can see that the diameter of the circle is equal to the length of a side. \(C = 10\pi \text{ in.} \)

Example 4: Find the perimeter of the square. Is it more or less than the circumference of the circle? Why?

Solution: The perimeter is \(P = 4(10) = 40 \text{ in.} \). In order to compare the perimeter with the circumference we should change the circumference into a decimal.

\[C = 10\pi \approx 31.42 \text{ in.} \] This is less than the perimeter of the square, which makes sense because the circle is inside the square.

Arc Length

In Chapter 9, we measured arcs in degrees. This was called the “arc measure” or “degree measure.” Arcs can also be measured in length, as a portion of the circumference.
Arc Length: The length of an arc or a portion of a circle’s circumference. The arc length is directly related to the degree arc measure.

Example 5: Find the length of \widehat{PQ}. Leave your answer in terms of π.

Solution: In the picture, the central angle that corresponds with \widehat{PQ} is 60°. This means that $m\overarc{PQ} = 60^\circ$. Think of the arc length as a portion of the circumference. There are 360° in a circle, so 60° would be $\frac{1}{6}$ of that ($\frac{60^\circ}{360^\circ} = \frac{1}{6}$). Therefore, the length of \widehat{PQ} is $\frac{1}{6}$ of the circumference. $\text{length of } \widehat{PQ} = \frac{1}{6} \cdot 2\pi(9) = 3\pi$

Arc Length Formula: The length of $\widehat{AB} = \frac{m\overarc{AB}}{360^\circ} \cdot \pi d$ or $\frac{m\overarc{AB}}{360^\circ} \cdot 2\pi r$.

Another way to write this could be $\frac{x^\circ}{360^\circ} \cdot 2\pi r$, where x is the central angle.

Example 6: The arc length of $\widehat{AB} = 6\pi$ and is $\frac{1}{4}$ the circumference. Find the radius of the circle.

Solution: If 6π is $\frac{1}{4}$ the circumference, then the total circumference is $4(6\pi) = 24\pi$. To find the radius, plug this into the circumference formula and solve for r.

$$24\pi = 2\pi r$$

$$12 = r$$

Example 7: Find the measure of the central angle or \widehat{PQ}.

Solution: Let’s plug in what we know to the Arc Length Formula.
10.4. Circumference and Arc Length

\[15\pi = \frac{m\overset{\frown}{PQ}}{360^\circ} \cdot 2\pi(18) \]
\[15 = \frac{m\overset{\frown}{PQ}}{10^\circ} \]
\[150^\circ = m\overset{\frown}{PQ} \]

Example 8: The tires on a compact car are 18 inches in diameter. How far does the car travel after the tires turn once? How far does the car travel after 2500 rotations of the tires?

Solution: One turn of the tire is the circumference. This would be \(C = 18\pi \approx 56.55 \text{ in} \). 2500 rotations would be \(2500 \cdot 56.55 \text{ in} = 141371.67 \text{ in}, 11781 \text{ ft}, \) or 2.23 miles.

Know What? Revisited The entire length of the crust, or the circumference of the pizza is \(14\pi \approx 44 \text{ in} \). In \(\frac{1}{8} \) of the pizza, one piece would have \(\frac{44}{8} \approx 5.5 \) inches of crust.

Review Questions

- Questions 1-10 are similar to Examples 1 and 2.
- Questions 11-14 are similar to Examples 3 and 4.
- Questions 15-20 are similar to Example 5.
- Questions 21-23 are similar to Example 6.
- Questions 24-26 are similar to Example 7.
- Questions 27-30 are similar to Example 8.

Fill in the following table. Leave all answers in terms of \(\pi \).

TABLE 10.1:

<table>
<thead>
<tr>
<th>diameter</th>
<th>radius</th>
<th>circumference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 15</td>
<td>2. 4</td>
<td>3. 6</td>
</tr>
<tr>
<td>4.</td>
<td>5. 9</td>
<td>6. 84\pi</td>
</tr>
<tr>
<td>7.</td>
<td>25\pi</td>
<td>8. 2\pi</td>
</tr>
</tbody>
</table>

600
9. Find the radius of circle with circumference 88 in.
10. Find the circumference of a circle with \(d = \frac{20}{\pi} \text{ cm} \).

Square \(PQSR \) is inscribed in \(\odot T \). \(RS = 8 \sqrt{2} \).

11. Find the length of the diameter of \(\odot T \).
12. How does the diameter relate to \(PQSR \)?
13. Find the perimeter of \(PQSR \).
14. Find the circumference of \(\odot T \).

Find the arc length of \(\widehat{PQ} \) in \(\odot A \). Leave your answers in terms of \(\pi \).
19. Find PA (the radius) in $\bigcirc A$. Leave your answer in terms of π.

21. Find the central angle or $m\widehat{PQ}$ in $\bigcirc A$. Round any decimal answers to the nearest tenth.
For questions 27-30, a truck has tires with a 26 in diameter.

27. How far does the truck travel every time a tire turns exactly once? What is this the same as?
28. How many times will the tire turn after the truck travels 1 mile? (1 mile = 5280 feet)
29. The truck has travelled 4072 tire rotations. How many miles is this?
30. The average recommendation for the life of a tire is 30,000 miles. How many rotations is this?

Review Queue Answers

1. $\angle CAE$
2. $\angle CBE$
3. $360^\circ, 180^\circ$
4. $m\widehat{CD} = 180^\circ - 26^\circ = 154^\circ, m\angle CBE = 13^\circ$
10.5 Areas of Circles and Sectors

Learning Objectives

• Find the area of circles, sectors, and segments.

Review Queue

1. Find the area of both squares.
2. Find the area of the shaded region.

3. The triangle to the right is an equilateral triangle.
 a. Find the height of the triangle.
 b. Find the area of the triangle.

Know What? Back to the pizza. In the previous section, we found the length of the crust for a 14 in pizza. However, crust typically takes up some area on a pizza. Round your answers to the nearest hundredth.
a) Find the area of the crust of a deep-dish 16 in pizza. A typical deep-dish pizza has 1 in of crust around the toppings.

b) A thin crust pizza has \(\frac{1}{2} \) in of crust around the edge of the pizza. Find the area of a thin crust 16 in pizza.

Area of a Circle

Take a circle and divide it into several wedges. Then, unfold the wedges so they are in a line, with the points at the top.

![Diagram](image)

The height of the wedges is the radius and the length is the circumference of the circle. Now, take half of these wedges and flip them upside-down and place them so they all fit together.

![Diagram](image)

Now our circle looks like a parallelogram. The area of this parallelogram is \(A = bh = \pi r \cdot r = \pi r^2 \).

Area of a Circle: If \(r \) is the radius of a circle, then \(A = \pi r^2 \).

Example 1: Find the area of a circle with a diameter of 12 cm.

Solution: If \(d = 12 \) cm, then \(r = 6 \) cm. The area is \(A = \pi (6^2) = 36\pi \) cm\(^2\).

Example 2: If the area of a circle is \(20\pi \), what is the radius?

Solution: Plug in the area and solve for the radius.
10.5. Areas of Circles and Sectors

\[20\pi = \pi r^2 \]
\[20 = r^2 \]
\[r = \sqrt{20} = 2\sqrt{5} \]

Just like the circumference, we will leave our answers in terms of \(\pi \), unless otherwise specified.

Example 3: A circle is inscribed in a square. Each side of the square is 10 cm long. What is the area of the circle?

Solution: The diameter of the circle is the same as the length of a side of the square. Therefore, the radius is 5 cm.

\[A = \pi 5^2 = 25\pi \text{ cm}^2 \]

Example 4: Find the area of the shaded region.

Solution: The area of the shaded region would be the area of the square minus the area of the circle.

\[A = 10^2 - 25\pi = 100 - 25\pi \approx 21.46 \text{ cm}^2 \]

Area of a Sector

Sector of a Circle: The area bounded by two radii and the arc between the endpoints of the radii.

Area of a Sector: If \(r \) is the radius and \(\widehat{AB} \) is the arc bounding a sector, then \(A = \frac{m\widehat{AB}}{360} \cdot \pi r^2 \).

Example 5: Find the area of the blue sector. Leave your answer in terms of \(\pi \).
Solution: In the picture, the central angle that corresponds with the sector is 60°. 60° would be $\frac{1}{6}$ of 360°, so this sector is $\frac{1}{6}$ of the total area. *area of blue sector* $= \frac{1}{6} \cdot \pi 8^2 = \frac{32}{3} \pi$

Another way to write the sector formula is $A = \frac{\text{central angle}}{360^\circ} \cdot \pi r^2$.

Example 6: The area of a sector is 8π and the radius of the circle is 12. What is the central angle?

Solution: Plug in what you know to the sector area formula and then solve for the central angle, we will call it x.

\[
8\pi = \frac{x}{360^\circ} \cdot \pi 12^2 \\
8\pi = \frac{x}{360^\circ} \cdot 144\pi \\
x = \frac{2x}{5^\circ} \\
x = \frac{8 \cdot 5^\circ}{2} = 20^\circ
\]

Example 7: The area of a sector is 135π and the arc measure is 216°. What is the radius of the circle?

Solution: Plug in what you know to the sector area formula and solve for r.

\[
135\pi = \frac{x}{360^\circ} \cdot \pi r^2
\]
Example 8: Find the area of the shaded region. The quadrilateral is a square.

Solution: The radius of the circle is 16, which is also half of the diagonal of the square. So, the diagonal is 32 and the sides would be \(\frac{32}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = 16 \sqrt{2} \) because each half of a square is a 45-45-90 triangle.

\[A_{circle} = 16^2 \pi = 256\pi \]
\[A_{square} = \left(16 \sqrt{2}\right)^2 = 256 \cdot 2 = 512 \]

The area of the shaded region is \(256\pi - 512 \approx 292.25 \)

Segments of a Circle

The last part of a circle that we can find the area of is called a segment, not to be confused with a line segment.

Segment of a Circle: The area of a circle that is bounded by a chord and the arc with the same endpoints as the chord.

\[A_{segment} = A_{sector} - A_{\triangle ABC} \]
Solution: The area of the segment is the area of the sector minus the area of the isosceles triangle made by the radii. If we split the isosceles triangle in half, each half is a 30-60-90 triangle, where the radius is the hypotenuse. The height of $\triangle ABC$ is 12 and the base would be $2 \left(12 \sqrt{3}\right) = 24 \sqrt{3}$.

$$A_{\text{sector}} = \frac{120}{360} \pi \cdot 24^2$$
$$= 192\pi$$

$$A_{\triangle} = \frac{1}{2} \left(24 \sqrt{3}\right) (12)$$
$$= 144 \sqrt{3}$$

The area of the segment is $A = 192\pi - 144 \sqrt{3} \approx 353.8$.

Know What? Revisited The area of the crust for a deep-dish pizza is $8^2\pi - 7^2\pi = 15\pi$. The area of the crust of the thin crust pizza is $8^2\pi - 7.5^2\pi = \frac{31}{4}\pi$.

Review Questions

- Questions 1-10 are similar to Examples 1 and 2.
- Questions 11-16 are similar to Example 5.
- Questions 17-19 are similar to Example 7.
- Questions 20-22 are similar to Example 6.
- Questions 23-25 are similar to Examples 3, 4, and 8.
- Questions 26-31 are similar to Example 9.

Fill in the following table. Leave all answers in terms of π.

<table>
<thead>
<tr>
<th></th>
<th>radius</th>
<th>Area</th>
<th>circumference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2</td>
<td>16π</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>16π</td>
<td>10π</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>9</td>
<td></td>
<td>24π</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>90π</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>$\frac{7}{\pi}$</td>
<td>35π</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Table 10.2:
Find the area of the blue sector or segment in \(\bigcirc A \). Leave your answers in terms of \(\pi \). Round any decimal answers to the nearest hundredth.

11. Find the radius of the circle. Leave your answer in terms of \(\pi \).

12.

13.

14.

15.

16.

Find the radius of the circle. Leave your answer in terms of \(\pi \).
Find the central angle of each blue sector. Round any decimal answers to the nearest tenth.

Find the area of the shaded region. Round your answer to the nearest hundredth.
26. Find the area of the sector in \(\bigodot A \). Leave your answer in terms of \(\pi \).

27. Find the area of the equilateral triangle.

28. Find the area of the segment. Round your answer to the nearest hundredth.

29. Find the area of the sector in \(\bigodot A \). Leave your answer in terms of \(\pi \).

30. Find the area of the right triangle.

31. Find the area of the segment. Round your answer to the nearest hundredth.
Review Queue Answers

1. \(8^2 - 4^2 = 64 - 16 = 48\)
2. \(6(10) - \frac{1}{2}(7)(3) = 60 - 10.5 = 49.5\)
3. \(\frac{1}{2}(6)(3\sqrt{3}) = 9\sqrt{3}\)
4. \(\frac{1}{2}(s) \left(\frac{1}{2}s \sqrt{3} \right) = \frac{1}{4}s^2 \sqrt{3}\)
Keywords, Theorems and Formulas

Triangles and Parallelograms

- Perimeter
- Area of a Rectangle: \(A = bh \)
- Perimeter of a Rectangle: \(P = 2b + 2h \)
- Perimeter of a Square: \(P = 4s \)
- Area of a Square: \(A = s^2 \)
- Congruent Areas Postulate
- Area Addition Postulate
- Area of a Parallelogram: \(A = bh \)
- Area of a Triangle: \(A = \frac{1}{2} bh \) or \(A = \frac{bh}{2} \)

Trapezoids, Rhombi, and Kites

- Area of a Trapezoid: \(A = \frac{1}{2}h(b_1 + b_2) \)
- Area of a Rhombus: \(A = \frac{1}{2}d_1d_2 \)
- Area of a Kite: \(A = \frac{1}{2}d_1d_2 \)

Area of Similar Polygons

- Area of Similar Polygons Theorem

Circumference and Arc Length

- \(\pi \)
- Circumference: \(C = \pi d \) or \(C = 2\pi r \)
- Arc Length
 - Arc Length Formula: \(\text{length of } \widehat{AB} = \frac{m\widehat{AB}}{360} \cdot \pi d \) or \(\frac{m\widehat{AB}}{360} \cdot 2\pi r \)

Area of Circles and Sectors

- Area of a Circle: \(A = \pi r^2 \)
- Sector
- Area of a Sector: \(A = \frac{m\widehat{AB}}{360} \cdot \pi r^2 \)
- Segment of a Circle

Review Questions

Find the area and perimeter of the following figures. Round your answers to the nearest hundredth.
1. square

2. rectangle

3. rhombus

4. equilateral triangle

5. parallelogram

6. kite
Find the area of the following figures. Leave your answers in simplest radical form.

7. triangle

8. kite

9. isosceles trapezoid

10. Find the area and circumference of a circle with radius 17.
11. Find the area and circumference of a circle with diameter 30.
12. Two similar rectangles have a scale factor $\frac{4}{3}$. If the area of the larger rectangle is 96 $unit^2$, find the area of the smaller rectangle.

Find the area of the following figures. Round your answers to the nearest hundredth.

13. find the shaded area

15. find the shaded area
(figure is a rhombus)

Texas Instruments Resources

In the CK-12 Texas Instruments Geometry FlexBook® resource, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9695.
Keywords: Define, write theorems, and/or draw a diagram for each word below.

1st Section: Triangles and Parallelograms

Perimeter

Area of a Rectangle: \(A = bh \)
Perimeter of a Rectangle \(P = 2b + 2h \)
Perimeter of a Square: \(P = 4s \)

Area of a Square: \(A = s^2 \)
Congruent Areas Postulate
Area Addition Postulate
Area of a Parallelogram: \(A = bh \)

Area of a Triangle: \(A = \frac{1}{2} bh \) or \(A = \frac{bh}{2} \)

Homework:
2nd Section: Trapezoids, Rhombi, and Kites

Area of a Trapezoid: \(A = \frac{1}{2}h(b_1 + b_2) \)

Area of a Rhombus: \(A = \frac{1}{2}d_1d_2 \)
Area of a Kite: \(A = \frac{1}{2}d_1d_2 \)

Homework:

3rd Section: Area of Similar Polygons

Area of Similar Polygons Theorem

Homework:

4th Section: Circumference and Arc Length
\(\pi \)
Circumference: \(C = \pi d \) or \(C = 2\pi r \)

Arc Length

Arc Length Formula: length of \(\widehat{AB} = \frac{m\widehat{AB}}{360^\circ} \cdot \pi d \) or \(\frac{m\widehat{AB}}{360^\circ} \cdot 2\pi r \)

Homework:

5th Section: Area of Circles and Sectors

Area of a Circle: \(A = \pi r^2 \)

Sector

Area of a Sector: \(A = \frac{m\widehat{AB}}{360^\circ} \cdot \pi r^2 \)

Segment of a Circle

Homework:
In this chapter we extend what we know about two-dimensional figures to three-dimensional shapes. First, we will define the different types of 3D shapes and their parts. Then, we will find the surface area and volume of prisms, cylinders, pyramids, cones, and spheres.
11.1 Exploring Solids

Learning Objectives

- Identify different types of solids and their parts.
- Use Euler’s formula and nets.

Review Queue

1. Draw an octagon and identify the edges and vertices of the octagon. How many of each are there?
2. Find the area of a square with 5 cm sides.
3. Draw the following polygons.
 a. A convex pentagon.
 b. A concave nonagon.

Know What? Until now, we have only talked about two-dimensional, or flat, shapes. Copy the equilateral triangle to the right onto a piece of paper and cut it out. Fold on the dotted lines. What shape do these four equilateral triangles make?

Polyhedrons

Polyhedron: A 3-dimensional figure that is formed by polygons that enclose a region in space.

Each polygon in a polyhedron is a face.

The line segment where two faces intersect is an edge.

The point of intersection of two edges is a vertex.
Examples of polyhedrons include a cube, prism, or pyramid. Non-polyhedrons are cones, spheres, and cylinders because they have sides that are not polygons.

Prism: A polyhedron with two congruent bases, in parallel planes, and the lateral sides are rectangles.

Pyramid: A polyhedron with one base and all the lateral sides meet at a common vertex.

All prisms and pyramids are named by their bases. So, the first prism would be a triangular prism and the first pyramid would be a hexagonal pyramid.

Example 1: Determine if the following solids are polyhedrons. If the solid is a polyhedron, name it and find the number of faces, edges and vertices each has.

a)

b)
11.1. Exploring Solids

Solution:

a) The base is a triangle and all the sides are triangles, so this is a triangular pyramid. There are 4 faces, 6 edges and 4 vertices.

b) This solid is also a polyhedron. The bases are both pentagons, so it is a pentagonal prism. There are 7 faces, 15 edges, and 10 vertices.

c) The bases that are circles. Circles are not polygons, so it is not a polyhedron.

Euler’s Theorem

Let’s put our results from Example 1 into a table.

<table>
<thead>
<tr>
<th></th>
<th>Faces</th>
<th>Vertices</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangular Pyramid</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Pentagonal Prism</td>
<td>7</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Notice that faces + vertices is two more than the number of edges. This is called Euler’s Theorem, after the Swiss mathematician Leonhard Euler.

Euler’s Theorem: \(F + V = E + 2 \).
\[\text{Faces} + \text{Vertices} = \text{Edges} + 2 \]
\[5 + 6 = 9 + 2 \]

Example 2: Find the number of faces, vertices, and edges in the octagonal prism.

Solution: There are 10 faces and 16 vertices. Use Euler’s Theorem, to solve for \(E \).

\[F + V = E + 2 \]
\[10 + 16 = E + 2 \]
\[24 = E \]

Example 3: In a six-faced polyhedron, there are 10 edges. How many vertices does the polyhedron have?

Solution: Solve for \(V \) in Euler’s Theorem.

\[F + V = E + 2 \]
\[6 + V = 10 + 2 \]
\[V = 6 \]

Example 4: A three-dimensional figure has 10 vertices, 5 faces, and 12 edges. Is it a polyhedron?

Solution: Plug in all three numbers into Euler’s Theorem.

\[F + V = E + 2 \]
\[5 + 10 = 12 + 2 \]
\[15 \neq 14 \]

Because the two sides are not equal, this figure is not a polyhedron.

Regular Polyhedra

Regular Polyhedron: A polyhedron where all the faces are congruent regular polygons.

All regular polyhedrons are **convex**.

A **concave** polyhedron “caves in.”
There are only five regular polyhedra, called the Platonic solids.

Regular Tetrahedron: A 4-faced polyhedron and all the faces are equilateral triangles.

Cube: A 6-faced polyhedron and all the faces are squares.

Regular Octahedron: An 8-faced polyhedron and all the faces are equilateral triangles.

Regular Dodecahedron: A 12-faced polyhedron and all the faces are regular pentagons.

Regular Icosahedron: A 20-faced polyhedron and all the faces are equilateral triangles.

Cross-Sections

One way to “view” a three-dimensional figure in a two-dimensional plane, like in this text, is to use cross-sections.

Cross-Section: The intersection of a plane with a solid.

The cross-section of the peach plane and the tetrahedron is a *triangle*.

Example 5: What is the shape formed by the intersection of the plane and the regular octahedron?

a)
Solution:

a) Square
b) Rhombus
c) Hexagon

Nets

Net: An unfolded, flat representation of the sides of a three-dimensional shape.

Example 6: What kind of figure does this net create?
11.1. Exploring Solids

Solution: The net creates a rectangular prism.

Example 7: Draw a net of the right triangular prism below.

Solution: The net will have two triangles and three rectangles. The rectangles are different sizes and the two triangles are the same.

There are several different nets of any polyhedron. For example, this net could have the triangles anywhere along the top or bottom of the three rectangles. Click the site http://www.cs.mcgill.ca/~sqrt/unfold/unfolding.html to see a few animations of other nets.

Know What? Revisited The net of the shape is a regular tetrahedron.

Review Questions

- Questions 1-8 are similar to Examples 2-4.
- Questions 9-14 are similar to Example 1.
- Questions 15-17 are similar to Example 5.
- Questions 18-23 are similar to Example 7.
- Questions 24-29 are similar to Example 6.
- Question 30 uses Euler’s Theorem.

Complete the table using Euler’s Theorem.
TABLE 11.2:

<table>
<thead>
<tr>
<th>Name</th>
<th>Faces</th>
<th>Edges</th>
<th>Vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rectangular Prism</td>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2. Octagonal Pyramid</td>
<td>16</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3. Regular Icosahedron</td>
<td>20</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4. Cube</td>
<td>12</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5. Triangular Pyramid</td>
<td>4</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>6. Octahedron</td>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>7. Heptagonal Prism</td>
<td>21</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>8. Triangular Prism</td>
<td>5</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Determine if the following figures are polyhedra. If so, name the figure and find the number of faces, edges, and vertices.

Describe the cross section formed by the intersection of the plane and the solid.
Draw the net for the following solids.
Determine what shape is formed by the following nets.
30. A **truncated icosahedron** is a polyhedron with 12 regular pentagonal faces and 20 regular hexagonal faces and 90 edges. This icosahedron closely resembles a soccer ball. How many vertices does it have? Explain your reasoning.

Review Queue Answers

1. There are 8 vertices and 8 edges in an octagon.

2. \(5^2 = 25 \text{ cm}^2 \)
11.2 Surface Area of Prisms and Cylinders

Learning Objectives

• Find the surface area of a prism and cylinder.

Review Queue

1. Find the area of a rectangle with sides:
 a. 6 and 9
 b. 11 and 4
 c. $5\sqrt{2}$ and $8\sqrt{6}$

2. If the area of a square is 36 units2, what are the lengths of the sides?
3. If the area of a square is 45 units2, what are the lengths of the sides?

Know What? Your parents decide they want to put a pool in the backyard. The shallow end will be 4 ft. and the deep end will be 8 ft. The pool will be 10 ft. by 25 ft. How much siding do they need to cover the sides and bottom of the pool?

Parts of a Prism

Prism: A 3-dimensional figure with 2 congruent bases, in parallel planes, and the other faces are rectangles.
11.2. Surface Area of Prisms and Cylinders

The non-base faces are **lateral faces**.
The edges between the lateral faces are **lateral edges**.
This is a **pentagonal prism**.

Right Prism: A prism where all the lateral faces are perpendicular to the bases.
Oblique Prism: A prism that leans to one side and the height is outside the prism.

Surface Area of a Prism

Surface Area: The sum of the areas of the faces.

\[
Surface\ Area = B_1 + B_2 + L_1 + L_2 + L_3 \\
Lateral\ Area = L_1 + L_2 + L_3
\]

Lateral Area: The sum of the areas of the **lateral** faces.

Example 1: Find the surface area of the prism below.

Solution: Draw the net of the prism.

Using the net, we have:
Surface Area of a Right Prism: The surface area of a right prism is the sum of the area of the bases and the area of each rectangular lateral face.

Example 2: Find the surface area of the prism below.

Solution: This is a right triangular prism. To find the surface area, we need to find the length of the hypotenuse of the base because it is the width of one of the lateral faces.

\[7^2 + 24^2 = c^2 \]
\[49 + 576 = c^2 \]
\[625 = c^2 \quad c = 25 \]

Looking at the net, the surface area is:

\[SA = 28(7) + 28(24) + 28(25) + 2\left(\frac{1}{2} \cdot 7 \cdot 24\right) \]
\[SA = 196 + 672 + 700 + 168 = 1736 \text{ units}^2 \]
Cylinders

Cylinder: A solid with congruent circular bases that are in parallel planes. The space between the circles is enclosed. A cylinder has a radius and a height. A cylinder can also be oblique, like the one on the far right.

Surface Area of a Right Cylinder

Let’s find the net of a right cylinder. One way to do this is to take the label off of a soup can. The label is a rectangle where the height is the height of the cylinder and the base is the circumference of the circle.

Surface Area of a Right Cylinder: \(SA = 2\pi r^2 + 2\pi rh. \)
Example 3: Find the surface area of the cylinder.

Solution: \(r = 4 \) and \(h = 12 \).

\[
SA = 2\pi r^2 + 2\pi rh
\]
\[
= 2\pi (4)^2 + 2\pi (4)(12)
\]
\[
= 32\pi + 96\pi
\]
\[
= 128\pi \text{ units}^2
\]

Example 4: The circumference of the base of a cylinder is \(16\pi \) and the height is 21. Find the surface area of the cylinder.

Solution: We need to solve for the radius, using the circumference.

\[
2\pi r = 16\pi
\]
\[
r = 8
\]

Now, we can find the surface area.
Example 5: Algebra Connection The total surface area of the triangular prism is 540 units2. What is x?

Solution: The total surface area is equal to:

$$A_{2 \text{ triangles}} + A_{3 \text{ rectangles}} = 540$$

The hypotenuse of the triangle bases is 13, $\sqrt{5^2 + 12^2}$. Let’s fill in what we know.

$$A_{2 \text{ triangles}} = 2 \left(\frac{1}{2} \cdot 5 \cdot 12 \right) = 60$$

$$A_{3 \text{ triangles}} = 5x + 12x + 13x = 30x$$

$$60 + 30x = 540$$

$$30x = 480$$

$$x = 16 \text{ units} \quad \text{The height is 16 units.}$$

Know What? Revisited To the right is the net of the pool (minus the top). From this, we can see that your parents would need 670 square feet of siding.

Review Questions

- Questions 1-9 are similar to Examples 1 and 2.
- Question 10 uses the definition of lateral and total surface area.
1. What type of prism is this?

2. Draw the net of this prism.
3. Find the area of the bases.
4. Find the area of lateral faces, or the lateral surface area.
5. Find the total surface area of the prism.

Use the right triangular prism to answer questions 6-9.

6. What shape are the bases of this prism? What are their areas?
7. What are the dimensions of each of the lateral faces? What are their areas?
8. Find the lateral surface area of the prism.
9. Find the total surface area of the prism.
10. **Writing** Describe the difference between **lateral** surface area and **total** surface area.
11. Fuzzy dice are cubes with 4 inch sides.
11.2. Surface Area of Prisms and Cylinders

a. What is the surface area of one die?
b. Typically, the dice are sold in pairs. What is the surface area of two dice?

12. A right cylinder has a 7 cm radius and a height of 18 cm. Find the surface area.

Find the surface area of the following solids. Round your answer to the nearest hundredth.

13. bases are isosceles trapezoids

14.

15.

16.

17.

18.

-Algebra Connection- Find the value of \(x \), given the surface area.

19. \(SA = 432 \text{ units}^2 \)
20. \(SA = 1536\pi \text{ units}^2 \)

21. \(SA = 1568 \text{ units}^2 \)

22. The area of the base of a cylinder is \(25\pi \text{ in}^2\) and the height is 6 in. Find the lateral surface area.

23. The circumference of the base of a cylinder is \(80\pi \text{ cm}\) and the height is 36 cm. Find the total surface area.

24. The lateral surface area of a cylinder is \(30\pi \text{ m}^2\) and the height is 5m. What is the radius?

Use the diagram below for questions 25-30. The barn is shaped like a pentagonal prism with dimensions shown in feet.

25. What is the width of the roof? (HINT: Use the Pythagorean Theorem)
26. What is the area of the roof? (Both sides)
27. What is the floor area of the barn?
28. What is the area of the rectangular sides of the barn?
29. What is the area of the two pentagon sides of the barn? (HINT: Find the area of two congruent trapezoids for each side)
30. Find the total surface area of the barn (Roof and sides).
11.2 Surface Area of Prisms and Cylinders

Review Queue Answers

1. a. 54
 b. 44
 c. $80\sqrt{3}$
2. $s = 6$
3. $s = 3\sqrt{5}$
11.3 Surface Area of Pyramids and Cones

Learning Objectives

- Find the surface area of pyramids and cones.

Review Queue

1. A rectangular prism has sides of 5 cm, 6 cm, and 7 cm. What is the surface area?
2. A cylinder has a diameter of 10 in and a height of 25 in. What is the surface area?
3. A cylinder has a circumference of $72\pi \text{ ft}$ and a height of 24 ft. What is the surface area?
4. Draw the net of a square pyramid.

Know What? A typical waffle cone is 6 inches tall and has a diameter of 2 inches. What is the surface area of the waffle cone? (You may assume that the cone is straight across at the top)

Parts of a Pyramid

Pyramid: A solid with one **base** and the **lateral faces** meet at a common **vertex**.

The edges between the lateral faces are **lateral edges**.

The edges between the base and the lateral faces are **base edges**.
11.3. Surface Area of Pyramids and Cones

Regular Pyramid: A pyramid where the base is a regular polygon.

All regular pyramids also have a slant height which is the height of a lateral face. A non-regular pyramid does not have a slant height.

Example 1: Find the slant height of the square pyramid.

Solution: The slant height is the hypotenuse of the right triangle formed by the height and half the base length. Use the Pythagorean Theorem.

\[8^2 + 24^2 = l^2 \]
\[640 = l^2 \]
\[l = \sqrt{640} = 8\sqrt{10} \]

Surface Area of a Regular Pyramid

Using the slant height, which is labeled \(l \), the area of each triangular face is \(A = \frac{1}{2} bl \).

Example 2: Find the surface area of the pyramid from Example 1.

644
Solution: The four triangular faces are \(4 \left(\frac{1}{2}bl \right) = 2(16) \left(8 \sqrt{10} \right) = 256 \sqrt{10} \). To find the total surface area, we also need the area of the base, which is \(16^2 = 256\). The total surface area is \(256 \sqrt{10} + 256 \approx 1065.54 \text{ units}^2\).

From this example, we see that the formula for a square pyramid is:

\[
SA = (\text{area of the base}) + 4(\text{area of triangular faces})
\]

\[
SA = B + n \left(\frac{1}{2}bl \right)
\]

\(B\) is the area of the base and \(n\) is the number of triangles.

Surface Area of a Regular Pyramid: If \(B\) is the area of the base, then \(SA = B + \frac{1}{2}nbl\).

The net shows the surface area of a pyramid. If you ever forget the formula, use the net.

Example 3: Find the area of the regular triangular pyramid.

Solution: “Regular” tells us the base is an equilateral triangle. Let’s draw it and find its area.
11.3. Surface Area of Pyramids and Cones

\[B = \frac{1}{2} \cdot 8 \cdot 4 \sqrt{3} = 16 \sqrt{3} \]

The surface area is:
\[SA = 16 \sqrt{3} + \frac{1}{2} \cdot 3 \cdot 8 \cdot 18 = 16 \sqrt{3} + 216 \approx 243.71 \]

Example 4: If the lateral surface area of a square pyramid is 72 ft\(^2\) and the base edge is equal to the slant height. What is the length of the base edge?

Solution: In the formula for surface area, the lateral surface area is \(\frac{1}{2}nb \). We know that \(n = 4 \) and \(b = l \). Let’s solve for \(b \).

\[
\frac{1}{2}nb = 72 \quad \text{ft}^2 \\
\frac{1}{2}(4)b^2 = 72 \\
2b^2 = 72 \\
b^2 = 36 \\
b = 6
\]

Surface Area of a Cone

Cone: A solid with a circular base and sides taper up towards a vertex.

A cone has a slant height, just like a pyramid.

A cone is generated from rotating a right triangle, around one leg, in a circle.

Surface Area of a Right Cone: \(SA = \pi r^2 + \pi rl \).
Area of the base: πr^2
Area of the sides: πrl

Example 5: What is the surface area of the cone?

![Cone Image]

Solution: First, we need to find the slant height. Use the Pythagorean Theorem.

\[
l^2 = 9^2 + 21^2 = 81 + 441 = \sqrt{522} \approx 22.85
\]

The surface area would be $SA = \pi 9^2 + \pi (9)(22.85) \approx 900.54$ units2.

Example 6: The surface area of a cone is 36π and the radius is 4 units. What is the slant height?

Solution: Plug in what you know into the formula for the surface area of a cone and solve for l.

\[
36\pi = \pi 4^2 + \pi 4l
\]

When each term has a π, they cancel out.
\[
36 = 16 + 4l \\
20 = 4l \\
5 = l
\]

Know What? Revisited The standard cone has a surface area of $\pi + \sqrt{35}\pi \approx 21.73$ in2.

Review Questions

- Questions 1-10 use the definitions of pyramids and cones.
- Questions 11-19 are similar to Example 1.
Fill in the blanks about the diagram to the left.

1. \(x \) is the ___________.
2. The slant height is ________.
3. \(y \) is the ___________.
4. The height is ________.
5. The base is _______.
6. The base edge is ________.

Use the cone to fill in the blanks.

7. \(v \) is the ___________.
8. The height of the cone is ______.
9. \(x \) is a __________ and it is the ___________ of the cone.
10. \(w \) is the ___________ ____________.

For questions 11-13, sketch each of the following solids and answer the question. Your drawings should be to scale, but not one-to-one. Leave your answer in simplest radical form.

11. Draw a right cone with a radius of 5 cm and a height of 15 cm. What is the slant height?
12. Draw a square pyramid with an edge length of 9 in and a 12 in height. Find the slant height.
13. Draw an equilateral triangle pyramid with an edge length of 6 cm and a height of 6 cm. What is the height of the base?
Find the slant height, l, of one lateral face in each pyramid or of the cone. Round your answer to the nearest hundredth.

Find the area of a lateral face of the regular pyramid. Round your answers to the nearest hundredth.
Find the surface area of the regular pyramids and right cones. Round your answers to 2 decimal places.
26. A regular tetrahedron has four equilateral triangles as its faces.

 a. Find the height of one of the faces if the edge length is 6 units.

 b. Find the area of one face.

 c. Find the total surface area of the regular tetrahedron.

27. If the lateral surface area of a cone is $30\pi \text{ cm}^2$ and the radius is 5 cm, what is the slant height?

28. If the surface area of a cone is $105\pi \text{ cm}^2$ and the slant height is 8 cm, what is the radius?

29. If the surface area of a square pyramid is 40 ft^2 and the base edge is 4 ft, what is the slant height?

30. If the lateral area of a square pyramid is 800 in^2 and the slant height is 16 in, what is the length of the base edge?

31. If the lateral area of a regular triangle pyramid is 252 in^2 and the base edge is 8 in, what is the slant height?

The traffic cone is cut off at the top and the base is a square with 24 in sides. Round answers to the nearest hundredth.

32. Find the area of the entire square. Then, subtract the area of the base of the cone.

33. Find the lateral area of the cone portion (include the 4 inch cut off top of the cone).

34. Subtract the cut-off top of the cone, to only have the lateral area of the cone portion of the traffic cone.

35. Combine your answers from #27 and #30 to find the entire surface area of the traffic cone.

Review Queue Answers

1. $2(5 \cdot 6) + 2(5 \cdot 7) + 2(6 \cdot 7) = 214 \text{ cm}^2$

2. $2(15 \cdot 18) + 2(15 \cdot 21) + 2(18 \cdot 21) = 1926 \text{ cm}^2$

3. $2 \cdot 25\pi + 250\pi = 300\pi \text{ in}^2$

4. $36^2(2\pi) + 72\pi(24) = 4320\pi \text{ ft}^2$
5.
11.4 Volume of Prisms and Cylinders

Learning Objectives

- Find the volume of prisms and cylinders.

Review Queue

1. Define volume in your own words.
2. What is the surface area of a cube with 3 inch sides?
3. A regular octahedron has 8 congruent equilateral triangles as the faces.
 a. If each edge is 4 cm, what is the slant height for one face?
 b. What is the surface area of one face?
 c. What is the total surface area?

Know What? Let’s fill the pool it with water. The shallow end is 4 ft. and the deep end is 8 ft. The pool is 10 ft. wide by 25 ft. long. How many cubic feet of water is needed to fill the pool?

Volume of a Rectangular Prism

Volume: The measure of how much space a three-dimensional figure occupies.

Another way to define volume would be how much a three-dimensional figure can hold. The basic unit of volume is the cubic unit: cubic centimeter \((cm^3)\), cubic inch \((in^3)\), cubic meter \((m^3)\), cubic foot \((ft^3)\).

Volume of a Cube Postulate: \(V = s^3\).
11.4. Volume of Prisms and Cylinders

\[V = s \cdot s \cdot s = s^3 \]

What this postulate tells us is that every solid can be broken down into cubes. For example, if we wanted to find the volume of a cube with 9 inch sides, it would be \(9^3 = 729 \text{ in}^3 \).

Volume Congruence Postulate: If two solids are congruent, then their volumes are congruent.

These prisms are congruent, so their volumes are congruent.

Example 1: Find the volume of the right rectangular prism below.

Solution: Count the cubes. The bottom layer has 20 cubes, or \(4 \times 5 \), and there are 3 layers. There are 60 cubes. The volume is also 60 \(\text{units}^3 \).

Each layer in Example 1 is the same as the area of the base and the number of layers is the same as the height. This is the formula for volume.

Volume of a Rectangular Prism: \(V = l \cdot w \cdot h \).
Example 2: A typical shoe box is 8 in by 14 in by 6 in. What is the volume of the box?
Solution: We can assume that a shoe box is a rectangular prism.
\[V = (8)(14)(6) = 672 \text{ in}^2 \]

Volume of any Prism

Notice that \(l \cdot w \) is equal to the area of the base of the prism, which we will re-label \(B \).

Volume of a Prism: \(V = B \cdot h \).

“\(B \)” is not always going to be the same. So, to find the volume of a prism, you would first find the area of the base and then multiply it by the height.

Example 3: You have a small, triangular prism shaped tent. How much volume does it have, once it is set up?

Solution: First, we need to find the area of the base.

\[B = \frac{1}{2}(3)(4) = 6 \text{ ft}^2. \]
\[V = Bh = 6(7) = 42 \text{ ft}^3 \]

Even though the height in this problem does not look like a “height,” it is, according to the formula. Usually, the height of a prism is going to be the last length you need to use.

Oblique Prisms

Recall that oblique prisms are prisms that lean to one side and the height is outside the prism. What would be the volume of an oblique prism? Consider to piles of books below.
Both piles have 15 books, which means they will have the same volume. Cavalieri’s Principle says that leaning does not matter, the volumes are the same.

Cavalieri’s Principle: If two solids have the same height and the same cross-sectional area at every level, then they will have the same volume.

If an oblique prism and a right prism have the same base area and height, then they will have the same volume.

Example 4: Find the area of the oblique prism below.

Solution: This is an oblique right trapezoidal prism. Find the area of the trapezoid.

\[
B = \frac{1}{2}(9)(8 + 4) = 9(6) = 54 \text{ cm}^2
\]

\[
V = 54(15) = 810 \text{ cm}^3
\]

Volume of a Cylinder

If we use the formula for the volume of a prism, \(V = Bh \), we can find the volume of a cylinder. In the case of a cylinder, the base is the area of a circle. Like a prism, Cavalieri’s Principle holds.

Volume of a Cylinder: \(V = \pi r^2 h. \)
Example 5: Find the volume of the cylinder.

Solution: If the diameter is 16, then the radius is 8.
\[V = \pi 8^2 (21) = 1344\pi \text{ units}^3 \]

Example 6: Find the volume of the cylinder.

Solution: \[V = \pi 6^2 (15) = 540\pi \text{ units}^3 \]

Example 7: If the volume of a cylinder is \(484\pi \text{ in}^3 \) and the height is 4 in, what is the radius?

Solution: Solve for \(r \).

\[
484\pi = \pi r^2 (4) \\
121 = r^2 \\
11 = r
\]

Example 8: Find the volume of the solid below.
Solution: This solid is a parallelogram-based prism with a cylinder cut out of the middle.

\[V_{\text{prism}} = (25 \cdot 25) \cdot 30 = 18750 \ cm^3 \]
\[V_{\text{cylinder}} = \pi (4)^2 (30) = 480\pi \ cm^3 \]

The total volume is \(18750 - 480\pi \approx 17242.04 \ cm^3 \).

Know What? Revisited Even though it doesn’t look like it, the trapezoid is the base of this prism. The area of the trapezoids are \(\frac{1}{2}(4+8) \cdot 25 = 150 \ ft^2 \). \(V = 150(10) = 1500 \ ft^3 \).

Review Questions

- Question 1 uses the volume formula for a cylinder.
- Questions 2-4 are similar to Example 1.
- Questions 5-18 are similar to Examples 2-6.
- Questions 19-24 are similar to Example 7.
- Questions 25-30 are similar to Example 8.

1. Two cylinders have the same surface area. Do they have the same volume? How do you know?
2. How many one-inch cubes can fit into a box that is 8 inches wide, 10 inches long, and 12 inches tall? Is this the same as the volume of the box?
3. A cereal box in 2 inches wide, 10 inches long and 14 inches tall. How much cereal does the box hold?
4. A can of soda is 4 inches tall and has a diameter of 2 inches. How much soda does the can hold? Round your answer to the nearest hundredth.
5. A cube holds 216 in\(^3\). What is the length of each edge?
6. A cube has sides that are 8 inches. What is the volume?
7. A cylinder has \(r = h \) and the radius is 4 cm. What is the volume?
8. A cylinder has a volume of \(486\pi \ ft^3 \). If the height is 6 ft., what is the diameter?

Use the right triangular prism to answer questions 9 and 10.

9. What is the length of the third base edge?
10. Find the volume of the prism.
11. Fuzzy dice are cubes with 4 inch sides.
a. What is the volume of one die?
b. What is the volume of both dice?

12. A right cylinder has a 7 cm radius and a height of 18 cm. Find the volume.

Find the volume of the following solids. Round your answers to the nearest hundredth.
11.4. Volume of Prisms and Cylinders

Algebra Connection Find the value of x, given the surface area.

19. $V = 504 \text{ units}^3$

20. $V = 6144\pi \text{ units}^3$

21. $V = 2688 \text{ units}^3$

22. The area of the base of a cylinder is $49\pi \text{ in}^2$ and the height is 6 in. Find the volume.

23. The circumference of the base of a cylinder is $80\pi \text{ cm}$ and the height is 15 cm. Find the volume.

24. The lateral surface area of a cylinder is $30\pi \text{ m}^2$ and the circumference is $10\pi \text{ m}$. What is the volume of the cylinder?

The bases of the prism are squares and a cylinder is cut out of the center.
25. Find the volume of the prism.
26. Find the volume of the cylinder in the center.
27. Find the volume of the figure.

This is a prism with half a cylinder on the top.

28. Find the volume of the prism.
29. Find the volume of the half-cylinder.
30. Find the volume of the entire figure.

Review Queue Answers

1. The amount a three-dimensional figure can hold.
2. 54 in^2
 a. $2 \sqrt{3}$
 b. $\frac{1}{2} \cdot 4 \cdot 2 \sqrt{3} = 4 \sqrt{3}$
 c. $8 \cdot 4 \sqrt{3} = 32 \sqrt{3}$
Learning Objectives

- Find the volume of pyramids and cones.

Review Queue

1. Find the volume of a square prism with 8 inch base edges and a 12 inch height.
2. Find the volume of a cylinder with a diameter of 8 inches and a height of 12 inches.
3. Find the surface area of a square pyramid with 10 inch base edges and a height of 12 inches.

Know What? The Khafre Pyramid is a pyramid in Giza, Egypt. It is a square pyramid with a base edge of 706 feet and an original height of 407.5 feet. What was the original volume of the Khafre Pyramid?

Volume of a Pyramid

The volume of a pyramid is closely related to the volume of a prism with the same sized base.

Investigation 11-1: Finding the Volume of a Pyramid

Tools needed: pencil, paper, scissors, tape, ruler, dry rice.

1. Make an open net (omit one base) of a cube, with 2 inch sides.
2. Cut out the net and tape up the sides to form an open cube.

3. Make an open net (no base) of a square pyramid, with lateral edges of 2.5 inches and base edges of 2 inches.

4. Cut out the net and tape up the sides to form an open pyramid.

5. Fill the pyramid with dry rice and dump the rice into the open cube. Repeat this until you have filled the cube?

Volume of a Pyramid: \[V = \frac{1}{3} Bh. \]

Example 1: Find the volume of the pyramid.
11.5. Volume of Pyramids and Cones

Solution: \(V = \frac{1}{3}(12^2)12 = 576 \text{ units}^3 \)

Example 2a: Find the height of the pyramid.

![Pyramid Diagram](image)

Solution: In this example, we are given the *slant* height. Use the Pythagorean Theorem.

\[
7^2 + h^2 = 25^2
\]
\[
h^2 = 576
\]
\[
h = 24
\]

Example 2b: Find the volume of the pyramid in Example 2a.

Solution: \(V = \frac{1}{3}(14^2)(24) = 1568 \text{ units}^3 \).

Example 3: Find the volume of the pyramid.

![Pyramid Diagram](image)

Solution: The base of the pyramid is a right triangle. The area of the base is \(\frac{1}{2}(14)(8) = 56 \text{ units}^2 \).

\[
V = \frac{1}{3}(56)(17) \approx 317.33 \text{ units}^3
\]

Example 4: A rectangular pyramid has a base area of 56 \(\text{cm}^2 \) and a volume of 224 \(\text{cm}^3 \). What is the height of the pyramid?

Solution:

\[
V = \frac{1}{3}Bh
\]
\[
224 = \frac{1}{3} \cdot 56h
\]
\[
12 = h
\]
Volume of a Cone

Volume of a Cone: \(V = \frac{1}{3} \pi r^2 h \).

This is the same relationship as a pyramid’s volume with a prism’s volume.

Example 5: Find the volume of the cone.

Solution: First, we need the height. Use the Pythagorean Theorem.

\[
5^2 + h^2 = 15^2
\]

\[
h = \sqrt{200} = 10 \sqrt{2}
\]

\[
V = \frac{1}{3} (5^2) \left(10 \sqrt{2}\right) \pi \approx 370.24
\]

Example 6: Find the volume of the cone.
11.5. Volume of Pyramids and Cones

Solution: We can use the same volume formula. Find the radius.

\[V = \frac{1}{3} \pi (3^2)(6) = 18\pi \approx 56.55 \]

Example 7: The volume of a cone is \(484\pi \text{ cm}^3\) and the height is 12 cm. What is the radius?

Solution: Plug in what you know to the volume formula.

\[
484\pi = \frac{1}{3} \pi r^2 (12)
\]

\[
121 = r^2
\]

\[
r = 11
\]

Composite Solids

Example 8: Find the volume of the composite solid. All bases are squares.

Solution: This is a square prism with a square pyramid on top. First, we need the height of the pyramid portion. Using the Pythagorean Theorem, we have, \(h = \sqrt{25^2 - 24^2} = 7\).

\[
V_{\text{prism}} = (48)(48)(18) = 41472 \text{ cm}^3
\]

\[
V_{\text{pyramid}} = \frac{1}{3}(48^2)(7) = 5376 \text{ cm}^3
\]

The total volume is \(41472 + 5376 = 46,848 \text{ cm}^3\).

Know What? Revisited The original volume of the pyramid is \(\frac{1}{3}(706^2)(407.5) \approx 67,704,223.33 \text{ ft}^3\).

Review Questions

- Questions 1-13 are similar to Examples 1-3, 5 and 6.
- Questions 14-22 are similar to Examples 4 and 7.
- Questions 23-31 are similar to Example 8.
Find the volume of each regular pyramid and right cone. Round any decimal answers to the nearest hundredth. The bases of these pyramids are either squares or equilateral triangles.
Find the volume of the following non-regular pyramids and cones. Round any decimal answers to the nearest hundredth.
A **regular tetrahedron** has four equilateral triangles as its faces. Use the diagram to answer questions 14-16. Round your answers to the nearest hundredth.

14. What is the area of the base of this regular tetrahedron?
15. What is the height of this figure? Be careful!
16. Find the volume.

A **regular octahedron** has eight equilateral triangles as its faces. Use the diagram to answer questions 17-21. Round your answers to the nearest hundredth.
17. **Describe** how you would find the volume of this figure.
18. Find the volume.
19. The volume of a square pyramid is 72 square inches and the base edge is 4 inches. What is the height?
20. If the volume of a cone is $30\pi \text{ cm}^3$ and the radius is 5 cm, what is the height?
21. If the volume of a cone is $105\pi \text{ cm}^3$ and the height is 35 cm, what is the radius?
22. The volume of a triangle pyramid is 170 in^3 and the base area is 34 in^2. What is the height of the pyramid?

For questions 23-31, round your answer to the nearest hundredth.

23. Find the volume of the base prism.

24. Find the volume of the pyramid.
25. Find the volume of the entire solid.

The solid to the right is a cube with a cone cut out.

26. Find the volume of the cube.
27. Find the volume of the cone.
28. Find the volume of the entire solid.

The solid to the left is a cylinder with a cone on top.

29. Find the volume of the cylinder.
30. Find the volume of the cone.
31. Find the volume of the entire solid.
Review Queue Answers

1. \((8^2)(12) = 768 \text{ in}^3\)
2. \((4^2)(12)\pi = 192\pi \approx 603.19\)
3. Find slant height, \(l = 13\). \(SA = 100 + \frac{1}{2}(40)(13) = 360 \text{ in}^2\)
11.6 Surface Area and Volume of Spheres

Learning Objectives

- Find the surface area of a sphere.
- Find the volume of a sphere.

Review Queue

1. List three spheres you would see in real life.
2. Find the area of a circle with a 6 cm radius.
3. Find the volume of a cylinder with the circle from #2 as the base and a height of 5 cm.

Know What? A regulation bowling ball is a sphere with a circumference of 27 inches. Find the radius of a bowling ball, its surface area and volume. You may assume the bowling ball does not have any finger holes. Round your answers to the nearest hundredth.

Defining a Sphere

A sphere is the last of the three-dimensional shapes that we will find the surface area and volume of. Think of a sphere as a three-dimensional circle.

Sphere: The set of all points, in three-dimensional space, which are equidistant from a point.

The radius has an endpoint on the sphere and the other endpoint is the center.
The diameter must contain the center.

Great Circle: A cross section of a sphere that contains the diameter.

A great circle is the largest circle cross section in a sphere. *The circumference of a sphere is the circumference of a great circle.*

Every great circle divides a sphere into two congruent hemispheres.

Example 1: The circumference of a sphere is 26π feet. What is the radius of the sphere?

Solution: The circumference is referring to the circumference of a great circle. Use $C = 2\pi r$.

\[
2\pi r = 26\pi \\
r = 13 \text{ ft.}
\]

Surface Area of a Sphere

Surface Area of a Sphere: $SA = 4\pi r^2$.

Example 2: Find the surface area of a sphere with a radius of 14 feet.
Solution:

\[SA = 4\pi(14)^2 \]
\[= 784\pi \text{ ft}^2 \]

Example 3: Find the surface area of the figure below.

![Image of a sphere with a radius of 6 cm](image)

Solution: Be careful when finding the surface area of a hemisphere because you need to include the area of the base.

\[SA = \pi r^2 + \frac{1}{2} 4\pi r^2 \]
\[= \pi (6^2) + 2\pi (6^2) \]
\[= 36\pi + 72\pi = 108\pi \text{ cm}^2 \]

Example 4: The surface area of a sphere is 100\(\pi\) \(\text{in}^2\). What is the radius?

Solution:

\[SA = 4\pi r^2 \]
\[100\pi = 4\pi r^2 \]
\[25 = r^2 \]
\[5 = r \]

Example 5: Find the surface area of the following solid.

![Image of a cylinder with a hemisphere on top](image)

Solution: This solid is a cylinder with a hemisphere on top. It is one solid, so do not include the bottom of the hemisphere or the top of the cylinder.
\[
SA = LA_{cylinder} + LA_{hemisphere} + A_{base\ circle}
\]
\[
= \pi rh + \frac{1}{2}4\pi r^2 + \pi r^2
\]
\[
= \pi(6)(13) + 2\pi 6^2 + \pi 6^2
\]
\[
= 78\pi + 72\pi + 36\pi
\]
\[
= 186\pi \text{ in}^2 \quad LA \text{ stands for lateral area.}
\]

Volume of a Sphere

Volume of a Sphere: \(V = \frac{4}{3}\pi r^3 \).

Example 6: Find the volume of a sphere with a radius of 9 m.

Solution:

\[
V = \frac{4}{3}\pi 6^3
\]
\[
= \frac{4}{3}\pi (216)
\]
\[
= 288\pi \text{ m}^3
\]

Example 7: A sphere has a volume of 14137.167 ft\(^3\), what is the radius?

Solution:

\[
V = \frac{4}{3}\pi r^3
\]
\[
14137.167 = \frac{4}{3}\pi r^3
\]
\[
\frac{3}{4\pi} \cdot 14137.167 = r^3
\]
\[
3375 = r^3
\]

At this point, you will need to take the **cubed root** of 3375. Ask your teacher how to do this on your calculator.
Example 8: Find the volume of the following solid.

Solution:

\[V_{cylinder} = \pi r^2 h = \pi \times 6^2 \times 13 = 78\pi \]
\[V_{hemisphere} = \frac{1}{2} \left(\frac{4}{3} \pi r^3 \right) = \frac{36\pi}{2} = 18\pi \]
\[V_{total} = V_{cylinder} + V_{hemisphere} = 78\pi + 18\pi = 96\pi \text{ in}^3 \]

Know What? Revisited The radius would be \(27 = 2\pi r \), or \(r = \frac{27}{2\pi} \approx 4.30 \text{ inches} \). The surface area would be \(4\pi r^2 \approx 232.35 \text{ in}^2 \), and the volume would be \(\frac{4}{3} \pi r^3 \approx 333.04 \text{ in}^3 \).
8. a radius of 15 ft.
9. a diameter of 32 in.
10. a circumference of $26\pi\text{ cm}$.
11. a circumference of $50\pi\text{ yds}$.
12. The surface area of a sphere is $121\pi\text{ in}^2$. What is the radius?
13. The volume of a sphere is $47916\pi\text{ m}^3$. What is the radius?
14. The surface area of a sphere is $4\pi\text{ ft}^2$. What is the volume?
15. The volume of a sphere is $36\pi\text{ mi}^3$. What is the surface area?
16. Find the radius of the sphere that has a volume of 335 cm^3. Round your answer to the nearest hundredth.
17. Find the radius of the sphere that has a surface area $225\pi\text{ ft}^2$.

Find the surface area of the following shapes. Leave your answers in terms of π.

18.

19.

20. You may assume the bottom is open.

21.

Find the volume of the following shapes. Round your answers to the nearest hundredth.
26. A sphere has a radius of 5 cm. A right cylinder has the same radius and volume. Find the height of the cylinder.

Tennis balls with a 3 inch diameter are sold in cans of three. The can is a cylinder. Round your answers to the nearest hundredth.
27. What is the volume of one tennis ball?
28. What is the volume of the cylinder?
29. Assume the balls touch the can on the sides, top and bottom. What is the volume of the space not occupied by the tennis balls?
30. How does the formula of the surface area of a sphere relate to the area of a circle?

Review Queue Answers

1. Answers will vary. Possibilities are any type of ball, certain lights, or the 76/Unical orb.
2. 36π
3. 180π
11.7. Extension: Exploring Similar Solids

Learning Objectives

- Find the relationship between similar solids and their surface areas and volumes.

Similar Solids

Recall that two shapes are similar if all the corresponding angles are congruent and the corresponding sides are proportional.

Similar Solids: Two solids are similar if they are the same type of solid and their corresponding radii, heights, base lengths, widths, etc. are proportional.

Example 1: Are the two rectangular prisms similar? How do you know?

Solution: Match up the corresponding heights, widths, and lengths.

\[
\frac{\text{small prism}}{\text{large prism}} = \frac{3}{4.5} = \frac{4}{6} = \frac{5}{7.5}
\]

The congruent ratios tell us the two prisms are similar.

Example 2: Determine if the two triangular pyramids similar.
Solution: Just like Example 1, let’s match up the corresponding parts.

\[
\frac{6}{8} = \frac{3}{4} = \frac{12}{16} \text{ however, } \frac{8}{12} = \frac{2}{3}.
\]

These triangle pyramids are not similar.

Surface Areas of Similar Solids

If two shapes are similar, then the ratio of the area is a square of the scale factor.

For example, the two rectangles are similar because their sides are in a ratio of 5:8. The area of the larger rectangle is \(8(16) = 128 \text{ units}^2\). The area of the smaller rectangle is \(5(10) = 50 \text{ units}^2\).

Comparing the areas in a ratio, it is \(50 : 128 = 25 : 64 = 5^2 : 8^2\).

So, what happens with the surface areas of two similar solids?

Example 3: Find the surface area of the two similar rectangular prisms.

Solution:

\[
\begin{align*}
SA_{\text{smaller}} &= 2(4 \cdot 3) + 2(4 \cdot 5) + 2(3 \cdot 5) \\
&= 24 + 40 + 30 = 94 \text{ units}^2 \\
SA_{\text{larger}} &= 2(6 \cdot 4.5) + 2(4.5 \cdot 7.5) + 2(6 \cdot 7.5) \\
&= 54 + 67.5 + 90 = 211.5 \text{ units}^2
\end{align*}
\]

Now, find the ratio of the areas. \(\frac{94}{211.5} = \frac{4}{9} = \frac{2^2}{3^2}\). The sides are in a ratio of \(\frac{4}{6} = \frac{2}{3}\), so the surface areas are in a ratio of \(\frac{2^2}{3^2}\).

Surface Area Ratio: If two solids are similar with a scale factor of \(\frac{a}{b}\), then the surface areas are in a ratio of \((\frac{a}{b})^2\).

Example 4: Two similar cylinders are below. If the ratio of the areas is 16:25, what is the height of the taller cylinder?
Solution: First, we need to take the square root of the area ratio to find the scale factor, $\sqrt{\frac{16}{25}} = \frac{4}{5}$. Set up a proportion to find h.

\[
\frac{4}{5} = \frac{24}{h} \\
4h = 120 \\
h = 30
\]

Example 5: Using the cylinders from Example 4, if the area of the smaller cylinder is $1536\pi \text{ cm}^2$, what is the area of the larger cylinder?

Solution: Set up a proportion using the ratio of the areas, 16:25.

\[
\frac{16}{25} = \frac{1536\pi}{A} \\
16A = 38400\pi \\
A = 2400\pi \text{ cm}^2
\]

Volumes of Similar Solids

Let’s look at what we know about similar solids so far.

Table 11.3:

<table>
<thead>
<tr>
<th>Scale Factor</th>
<th>Ratios</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{a}{b}$</td>
<td>$\left(\frac{a}{b}\right)^2$</td>
<td>$\text{in, ft, cm, m, etc.}$</td>
</tr>
<tr>
<td>Ratio of the Surface Areas</td>
<td>$\left(\frac{a}{b}\right)^2$</td>
<td>$\text{in}^2, \text{ft}^2, \text{cm}^2, \text{m}^2, \text{etc.}$</td>
</tr>
<tr>
<td>Ratio of the Volumes</td>
<td>??</td>
<td>$\text{in}^3, \text{ft}^3, \text{cm}^3, \text{m}^3, \text{etc.}$</td>
</tr>
</tbody>
</table>

If the ratio of the volumes follows the pattern from above, it should be the **cube** of the scale factor.

Example 6: Find the volume of the following rectangular prisms. Then, find the ratio of the volumes.
Solution:

\[V_{\text{smaller}} = 3(4)(5) = 60 \]
\[V_{\text{larger}} = 4.5(6)(7.5) = 202.5 \]

The ratio is \(\frac{60}{202.5} \), which reduces to \(\frac{8}{27} = \frac{2^3}{3^3} \).

Volume Ratio: If two solids are similar with a scale factor of \(\frac{a}{b} \), then the volumes are in a ratio of \(\left(\frac{a}{b} \right)^3 \).

Example 7: Two spheres have radii in a ratio of 3:4. What is the ratio of their volumes?

Solution: If we cube 3 and 4, we will have the ratio of the volumes. \(3^3 : 4^3 = 27 : 64 \).

Example 8: If the ratio of the volumes of two similar prisms is 125:8, what is the scale factor?

Solution: Take the *cubed root* of 125 and 8 to find the scale factor.
\[
\sqrt[3]{125} : \sqrt[3]{8} = 5 : 2
\]

Example 9: Two similar right triangle prisms are below. If the ratio of the volumes is 343:125, find the missing sides in both triangles.

Solution: The scale factor is 7:5, the cubed root. With the scale factor, we can now set up several proportions.

\[
\begin{align*}
\frac{7}{5} &= \frac{7}{y} & \frac{7}{5} &= \frac{x}{10} & \frac{7}{5} &= \frac{35}{w} & 7^2 + x^2 &= z^2 & \frac{7}{5} &= \frac{z}{v} \\
y &= 5 & x &= 14 & w &= 25 & 7^2 + 14^2 &= z^2 & z &= \sqrt{245} = 7 \sqrt{5} & \frac{7}{5} &= \frac{7 \sqrt{5}}{v} \rightarrow v &= 5 \sqrt{5}
\end{align*}
\]

Example 10: The ratio of the surface areas of two similar cylinders is 16:81. What is the ratio of the volumes?

Solution: First, find the scale factor. If we take the square root of both numbers, the ratio is 4:9. Now, cube this to find the ratio of the volumes, \(4^3 : 9^3 = 64 : 729 \).
Review Questions

- Questions 1-4 are similar to Examples 1 and 2.
- Questions 5-14 are similar to Examples 3-8 and 10.
- Questions 15-18 are similar to Example 9.
- Questions 19 and 20 are similar to Example 1.

Determine if each pair of right solids are similar.

5. Are all cubes similar? Why or why not?
6. Two prisms have a scale factor of 1:4. What is the ratio of their surface areas?
7. Two pyramids have a scale factor of 2:7. What is the ratio of their volumes?
8. Two spheres have radii of 5 and 9. What is the ratio of their volumes?
9. The surface area of two similar cones is in a ratio of 64:121. What is the scale factor?
10. The volume of two hemispheres is in a ratio of 125:1728. What is the scale factor?
11. A cone has a volume of 15π and is similar to another larger cone. If the scale factor is 5:9, what is the volume of the larger cone?
12. The ratio of the volumes of two similar pyramids is 8:27. What is the ratio of their total surface areas?
13. The ratio of the volumes of two tetrahedrons is 1000:1. The smaller tetrahedron has a side of length 6 cm.
What is the side length of the larger tetrahedron?
14. The ratio of the surface areas of two cubes is 64:225. What is the ratio of the volumes?

Below are two similar square pyramids with a volume ratio of 8:27. The base lengths are equal to the heights. Use this to answer questions 15-18.

18. What is the scale factor?
19. What is the ratio of the surface areas?
20. Find h, x and y.
21. Find the volume of both pyramids.

Use the hemispheres below to answer questions 19-20.

19. Are the two hemispheres similar? How do you know?
20. Find the ratio of the surface areas and volumes.
11.8 Chapter 11 Review

Keywords, Theorems, & Formulas

Exploring Solids

- Polyhedron
- Face
- Edge
- Vertex
- Prism
- Pyramid
- Euler’s Theorem
- Regular Polyhedron
- Regular Tetrahedron
- Cube
- Regular Octahedron
- Regular Dodecahedron
- Regular Icosahedron
- Cross-Section
- Net

Surface Area of Prisms Cylinders

- Lateral Face
- Lateral Edge
- Base Edge
- Right Prism
- Oblique Prism
- Surface Area
- Lateral Area
- Surface Area of a Right Prism
- Cylinder
- Surface Area of a Right Cylinder

Surface Area of Pyramids Cones

- Surface Area of a Regular Pyramid
- Cone
- Slant Height
- Surface Area of a Right Cone

Volume of Prisms Cylinders

- Volume
• Volume of a Cube Postulate
• Volume Congruence Postulate
• Volume of a Rectangular Prism
• Volume of a Prism
• Cavalieri’s Principle
• Volume of a Cylinder

Volume of Pyramids Cones

• Volume of a Pyramid
• Volume of a Cone

Surface Area and Volume of Spheres

• Sphere
• Great Circle
• Surface Area of a Sphere
• Volume of a Sphere

Extension: Similar Solids

• Similar Solids
• Surface Area Ratio
• Volume Ratio

Review Questions

Match the shape with the correct name.

A. B. C. D.

E. F. G. H.

I. J. K. L.

1. Triangular Prism
2. Icosahedron
3. Cylinder
4. Cone
5. Tetrahedron
6. Pentagonal Prism
7. Octahedron
8. Hexagonal Pyramid
9. Octagonal Prism
10. Sphere
11. Cube
12. Dodecahedron

Match the formula with its description.

13. Volume of a Prism - A. $\frac{1}{2}\pi r^2h$
14. Volume of a Pyramid - B. πr^2h
15. Volume of a Cone - C. $4\pi r^2$
16. Volume of a Cylinder - D. $\frac{4}{3}\pi r^3$
17. Volume of a Sphere - E. $\pi r^2 + \pi rl$
18. Surface Area of a Prism - F. $2\pi r^2 + 2\pi rh$
19. Surface Area of a Pyramid - G. $\frac{1}{2}Bh$
20. Surface Area of a Cone - H. Bh
21. Surface Area of a Cylinder - I. $B + \frac{1}{2}Pl$
22. Surface Area of a Sphere - J. The sum of the area of the bases and the area of each rectangular lateral face.

Texas Instruments Resources

In the CK-12 Texas Instruments Geometry FlexBook® resource, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9696 .
Keywords: Define, write theorems, and/or draw a diagram for each word below.

1st Section: Exploring Solids

Polyhedron
Face
Edge
Vertex

Prism
Pyramid
Euler’s Theorem
Regular Polyhedron

Regular Tetrahedron
Cube
Regular Octahedron
Regular Dodecahedron
Regular Icosahedron
Cross-Section
Net

Homework:

2nd Section: Surface Area of Prisms Cylinders
Lateral Face
Lateral Edge
Base Edge

Right Prism
Oblique Prism
Surface Area
Lateral Area
Surface Area of a Right Prism
Cylinder
Surface Area of a Right Cylinder

Homework:

3rd Section: Surface Area of Pyramids Cones

Surface Area of a Regular Pyramid

690
Cone
Slant Height
Surface Area of a Right Cone

Homework:

4th Section: Volume of Prisms Cylinders

Volume
Volume of a Cube Postulate

Volume Congruence Postulate
Volume Addition Postulate
Volume of a Rectangular Prism
Volume of a Prism
Cavalieri’s Principle
Volume of a Cylinder

Homework:

5th Section: Volume of Pyramids Cones

Volume of a Pyramid
Volume of a Cone

Homework:

6th Section: Surface Area and Volume of Spheres

Sphere

Great Circle
Surface Area of a Sphere
Volume of a Sphere

Homework:

Extension: Similar Solids

Similar Solids
Surface Area Ratio
Volume Ratio

Homework:
The final chapter of Geometry transforms a figure by moving, flipping, or rotating it. First, we will look at symmetry, followed by the different transformations.
12.1 Exploring Symmetry

Learning Objectives

- Understand line and rotational symmetry.

Review Queue

1. Define symmetry in your own words.
2. Plot the points $A(1,3), B(3,1), C(5,3),$ and $D(3,5)$.
3. Find the slope of each side of the quadrilateral in #2.
4. Find the slope of the diagonals of the quadrilateral. What kind of shape is this?

Know What? Symmetry exists all over nature. One example is a starfish. Determine if the starfish has line symmetry or rotational symmetry.

Lines of Symmetry

Line of Symmetry: A line that passes through a figure such that it splits the figure into two congruent halves.

Example 1: Find all lines of symmetry for the shapes below.

a)
Solution: For each figure, draw lines through the figure so that the lines perfect cut the figure in half. Figure a) has two lines of symmetry, b) has eight, c) has no lines of symmetry, and d) has one.

a)

b)

c)

d)
12.1. Exploring Symmetry

Figures a), b), and d) all have **line symmetry**.

Line Symmetry: When a figure has one or more lines of symmetry.

These figures have line symmetry:

These figures **do not** have line symmetry:

Example 2: Do the figures below have line symmetry?

a)

b)
Solution: Yes, both of these figures have line symmetry.

a)

b)

Rotational Symmetry

Rotational Symmetry: When a figure can be rotated (less that 180°) and it looks like it did before the rotation.

Center of Rotation: The point a figure is rotated around such that the rotational symmetry holds.

For the H, we can rotate it twice, the triangle can be rotated 3 times and still look the same and the hexagon can be rotated 6 times.
Example 3: Determine if each figure below has rotational symmetry. Find the angle and how many times it can be rotated.

a)

Solution:

a) The pentagon can be rotated 5 times. Because there are 5 lines of rotational symmetry, the angle would be \(\frac{360^\circ}{5} = 72^\circ \).

b) The \(N \) can be rotated twice. This means the angle of rotation is 180°.
c) The checkerboard can be rotated 4 times. There are 4 lines of rotational symmetry, so the angle of rotation is \(\frac{360^\circ}{4} = 90^\circ \).

\[
\text{Know What? Revisited}\hspace{1em} \text{The starfish has 5 lines of symmetry and 5 lines of rotational symmetry. The angle of rotation is } 72^\circ . \text{ The center of rotation is the center of the starfish.}
\]

\[
\begin{align*}
\text{Review Questions} \\
\text{• Questions 1-15 use the definitions of figures and symmetry.} \\
\text{• Questions 16-18 ask you to draw figures based on symmetry.} \\
\text{• Questions 19-38 are similar to Examples 1 and 3.} \\
\text{• Questions 39-41 are similar to Example 2.}
\end{align*}
\]

Fill in the blanks.

\[
\begin{align*}
1. \text{If a figure has } 3 \text{ lines of rotational symmetry, it can be rotated _______ times.} \\
2. \text{If a figure can be rotated } 6 \text{ times, it has _______ lines of rotational symmetry.} \\
3. \text{If a figure can be rotated } n \text{ times, it has _______ lines of rotational symmetry.} \\
4. \text{To find the angle of rotation, divide } 360^\circ \text{ by the total number of _____________.} \\
5. \text{Every square has an angle of rotation of _________.}
\end{align*}
\]

True or False

\[
\begin{align*}
6. \text{All right triangles have line symmetry.} \\
7. \text{All isosceles triangles have line symmetry.}
\end{align*}
\]
8. Every rectangle has line symmetry.
9. Every rectangle has exactly two lines of symmetry.
10. Every parallelogram has line symmetry.
11. Every square has exactly two lines of symmetry.
12. Every regular polygon has three lines of symmetry.
13. Every sector of a circle has a line of symmetry.
14. Every parallelogram has rotational symmetry.
15. Every figure that has line symmetry also has rotational symmetry.

Draw the following figures.

16. A quadrilateral that has two pairs of congruent sides and exactly one line of symmetry.
17. A figure with infinitely many lines of symmetry.
18. A figure that has one line of symmetry and no rotational symmetry.

Find all lines of symmetry for the letters below.

24. Do any of the letters above have rotational symmetry? If so, which one(s) and what are the angle of rotation?

Determine if the words below have line symmetry or rotational symmetry.

25. OHIO
26. MOW
27. WOW
28. KICK
29. pod

Trace each figure and then draw in all lines of symmetry.
Find the angle of rotation and the number of times each figure can rotate.
Determine if the figures below have line symmetry or rotational symmetry. Identify all lines of symmetry and the angle of rotation.

Review Queue Answers

1. Where one side of an object matches the other side; answers will vary.
2. $m_{AD} = 1, m_{AB} = -1, m_{BC} = 1, m_{CD} = -1$

3. $m_{AC} = 0, m_{BD} = \text{undefined}$. The figure is a square.
12.2 Translations

Learning Objectives

• Graph a point, line, or figure and translate it x and y units.
• Write a translation rule.

Review Queue

1. Find the equation of the line that contains (9, -1) and (5, 7).
2. What type of quadrilateral is formed by $A(1, -1), B(3, 0), C(5, -5)$ and $D(-3, 0)$?
3. Find the equation of the line parallel to #1 that passes through (4, -3).

Know What? The distances between San Francisco, S, Paso Robles, P, and Ukiah, U, are given in miles the graph. Find:

a) The translation rule for P to S.
b) The translation rule for S to U.
c) The translation rule for P to U.
d) The translation rule for U to S. It is not the same as part b.

Transformations

Transformation: An operation that moves, flips, or changes a figure to create a new figure.
Rigid Transformation: A transformation that does not change the size or shape of a figure.

The rigid transformations are: translations, reflections, and rotations. The new figure created by a transformation is called the *image*. The original figure is called the *preimage*. Another word for a rigid transformation is an *isometry* or *congruence transformations*.

In Lesson 7.6, we learned how to label an image. If the preimage is A, then the image would be A', said “a prime.” If there is an image of A', that would be labeled A'', said “a double prime.”

Translations

Translation: A transformation that moves every point in a figure the same distance in the same direction.

This transformation moves the parallelogram to the right 5 units and up 3 units. It is written $(x, y) \rightarrow (x + 5, y + 3)$.

Example 1: Graph square $S(1, 2), Q(4, 1), R(5, 4)$ and $E(2, 5)$. Find the image after the translation $(x, y) \rightarrow (x - 2, y + 3)$. Then, graph and label the image.

Solution: We are going to move the square to the left 2 and up 3.
Example 2: Find the translation rule for \(\triangle TRI\) to \(\triangle T'R'I'\).

Solution: Look at the movement from \(T\) to \(T'\). The translation rule is \((x, y) \rightarrow (x + 6, y - 4)\).

Example 3: Show \(\triangle TRI \cong \triangle T'R'I'\) from Example 2.

Solution: Use the distance formula to find all the lengths of the sides of the two triangles.

\[
\frac{\triangle TRI}{\triangle T'R'I'}
\]

\[
TR = \sqrt{(-3 - 2)^2 + (3 - 6)^2} = \sqrt{34} \quad T'R' = \sqrt{(3 - 8)^2 + (-1 - 2)^2} = \sqrt{34}
\]

\[
RI = \sqrt{(2 - (-2))^2 + (6 - 8)^2} = \sqrt{20} \quad R'I' = \sqrt{(8 - 4)^2 + (2 - 4)^2} = \sqrt{20}
\]

\[
TI = \sqrt{(-3 - (-2))^2 + (3 - 8)^2} = \sqrt{26} \quad T'I' = \sqrt{(3 - 4)^2 + (-1 - 4)^2} = \sqrt{26}
\]

This verifies our statement at the beginning of the section that a translation is an isometry or congruence translation.
Example 4: Triangle $\triangle ABC$ has coordinates $A(3, -1), B(7, -5)$ and $C(-2, -2)$. Translate $\triangle ABC$ to the left 4 units and up 5 units. Determine the coordinates of $\triangle A'B'C'$.

Solution: Graph $\triangle ABC$. To translate $\triangle ABC$, subtract 4 from each x value and add 5 to each y value.

- $A(3, -1) \rightarrow (3 - 4, -1 + 5) = A'(-1, 4)$
- $B(7, -5) \rightarrow (7 - 4, -5 + 5) = B'(3, 0)$
- $C(-2, -2) \rightarrow (-2 - 4, -2 + 5) = C'(-6, 3)$

The rule would be $(x, y) \rightarrow (x - 4, y + 5)$.

Know What? Revisited

- a) $(x, y) \rightarrow (x - 84, y + 187)$
- b) $(x, y) \rightarrow (x - 39, y + 108)$
- c) $(x, y) \rightarrow (x - 123, y + 295)$
- d) $(x, y) \rightarrow (x + 39, y - 108)$

Review Questions

- Questions 1-13 are similar to Example 1.
- Questions 14-17 are similar to Example 2.
- Questions 18-20 are similar to Example 3.
- Questions 21-23 are similar to Example 1.
- Questions 24 and 25 are similar to Example 4.

Use the translation $(x, y) \rightarrow (x + 5, y - 9)$ for questions 1-7.

1. What is the image of $A(-6, 3)$?
2. What is the image of $B(4, 8)$?
3. What is the image of $C(5, -3)$?
4. What is the image of A'?
5. What is the preimage of $D'(12, 7)$?
6. What is the image of A''?
7. Plot A,A',A'', and A''' from the questions above. What do you notice?

The vertices of $\triangle ABC$ are $A(-6,-7), B(-3,-10)$ and $C(-5,2)$. Find the vertices of $\triangle A'B'C'$, given the translation rules below.

8. $(x, y) \rightarrow (x - 2, y - 7)$
9. $(x, y) \rightarrow (x + 11, y + 4)$
10. $(x, y) \rightarrow (x, y - 3)$
11. $(x, y) \rightarrow (x - 5, y + 8)$
12. $(x, y) \rightarrow (x + 1, y)$
13. $(x, y) \rightarrow (x + 3, y + 10)$

In questions 14-17, $\triangle A'B'C'$ is the image of $\triangle ABC$. Write the translation rule.
Use the triangles from #17 to answer questions 18-20.

18. Find the lengths of all the sides of \(\triangle ABC \).
19. Find the lengths of all the sides of \(\triangle A'B'C' \).
20. What can you say about \(\triangle ABC \) and \(\triangle A'B'C' \)? Can you say this for any translation?
21. If \(\triangle A'B'C' \) was the preimage and \(\triangle ABC \) was the image, write the translation rule for #14.
22. If \(\triangle A'B'C' \) was the preimage and \(\triangle ABC \) was the image, write the translation rule for #15.
23. Find the translation rule that would move \(A \) to \(A'(0,0) \), for #16.
24. The coordinates of \(\triangle DEF \) are \(D(4,-2), E(7,-4) \) and \(F(5,3) \). Translate \(\triangle DEF \) to the right 5 units and up 11 units. Write the translation rule.
25. The coordinates of quadrilateral \(QUAD \) are \(Q(-6,1), U(-3,7), A(4,-2) \) and \(D(1,-8) \). Translate \(QUAD \) to the left 3 units and down 7 units. Write the translation rule.

Review Queue Answers

1. \(y = -2x + 17 \)
2. Kite
3. \(y = -2x + 5 \)
12.3 Reflections

Learning Objectives

- Reflect a figure over a given line.
- Find the rules for reflections.

Review Queue

1. Define reflection in your own words.
2. Plot $A(-3, 2)$. Translate A such that $(x, y) \rightarrow (x + 6, y)$.
3. What line is halfway between A and A'?

Know What? A lake can act like a mirror in nature. Describe the line of reflection in the picture to the right.

Reflections over an Axis

Reflection: A transformation that turns a figure into its mirror image by flipping it over a line.

Line of Reflection: The line that a figure is reflected over.
Example 1: Reflect $\triangle ABC$ over the y–axis. Find the coordinates of the image.

![Diagram of triangle ABC and its reflection A'B'C']

Solution: $\triangle A'B'C'$ will be the same distance away from the y–axis as $\triangle ABC$, but on the other side.

$A(4, 3) \rightarrow A'(-4, 3)$
$B(7, -1) \rightarrow B'(-7, -1)$
$C(2, -2) \rightarrow C'(-2, -2)$

From this example, we can generalize a rule for reflecting a figure over the y–axis.

Reflection over the y–axis: $(x, y) \rightarrow (-x, y)$

Example 2: Reflect the letter “F” over the x–axis.
12.3. Reflections

Solution: To reflect the letter F over the x–axis, the y–coordinates will be the same distance away from the x–axis, but on the other side of the x–axis.

Reflection over the x–axis: $(x, y) \rightarrow (x, -y)$

Reflections over Horizontal and Vertical Lines

We can also reflect a figure over any vertical or horizontal line.

Example 3: Reflect the triangle $\triangle ABC$ with vertices $A(4, 5), B(7, 1)$ and $C(9, 6)$ over the line $x = 5$.
712
Solution: The image’s vertices are the same distance away from $x = 5$ as the preimage.

$A(4, 5) \rightarrow A'(6, 5)$
$B(7, 1) \rightarrow B'(3, 1)$
$C(9, 6) \rightarrow C'(1, 6)$

Example 4: Reflect the line segment \overline{PQ} with endpoints $P(-1, 5)$ and $Q(7, 8)$ over the line $y = 5$.

Solution: The line of reflection is on P, which means P' has the same coordinates. Q' is the same distance away from $y = 5$, but on the other side.
12.3. Reflections

$P(-1, 5) \rightarrow P'(-1, 5)$
$Q(7, 8) \rightarrow Q'(7, 2)$

From these examples we have learned that if a point is on the line of reflection then the image is the same as the preimage.

Example 5: A triangle $\triangle LMN$ and its reflection, $\triangle L'M'N'$ are to the left. What is the line of reflection?

Solution: Looking at the graph, we see that the preimage and image intersect when $y = 1$. Therefore, this is the line of reflection.

If the image does not intersect the preimage, find the midpoint between the preimage and its image. This point is on the line of reflection.

Reflections over $y = x$ **and** $y = -x$

Example 6: Reflect square $ABCD$ over the line $y = x$.

714
The purple line is \(y = x \). Fold the graph on the line of reflection.

\[
A(-1, 5) \rightarrow A'(5, -1) \\
B(0, 2) \rightarrow B'(2, 0) \\
C(-3, 1) \rightarrow C'(1, -3) \\
D(-4, 4) \rightarrow D'(4, -4)
\]

From this example, we see that the \(x \) and \(y \) values are switched.

Reflection over \(y = x \): \((x, y) \rightarrow (y, x)\)

Example 7: Reflect the trapezoid \(TRAP \) over the line \(y = -x \).
12.3. Reflections

Solution: The purple line is $y = -x$. You can reflect the trapezoid over this line just like we did in Example 6.

$$T(2, 2) \rightarrow T'(-2, -2)$$
$$R(4, 3) \rightarrow R'(-3, -4)$$
$$A(5, 1) \rightarrow A'(-1, -5)$$
$$P(1, -1) \rightarrow P'(1, -1)$$

From this example, we see that the x and y values are switched with the opposite signs.

Reflection over $y = -x$: $(x, y) \rightarrow (-y, -x)$

From all of these examples, we notice that a reflection is an isometry.

Know What? Revisited The white line in the picture is the line of reflection. This line coincides with the water’s edge.
Review Questions

- Questions 1-5 are similar to Examples 1, 3, 4, 6, and 7.
- Questions 6 and 7 are similar to Example 2.
- Questions 8-19 are similar to Examples 1, 3, 4, 6, and 7.
- Questions 20-22 are similar to Example 5.
- Questions 23-30 are similar to Examples 3 and 4.

1. If (5, 3) is reflected over the y-axis, what is the image?
2. If (5, 3) is reflected over the x-axis, what is the image?
3. If (5, 3) is reflected over y = x, what is the image?
4. If (5, 3) is reflected over y = -x, what is the image?
5. Plot the four images. What shape do they make? Be specific.
6. Which letter is a reflection over a vertical line of the letter “b”?
7. Which letter is a reflection over a horizontal line of the letter “b”?

Reflect each shape over the given line.

8. y-axis

9. x-axis
10. \(y = 3 \)

11. \(x = -1 \)

12. \(x \)-axis
13. y–axis

14. $y = x$

15. $y = -x$
16. $x = 2$

17. $y = -4$

18. $y = -x$
19. \(y = x \)

Find the line of reflection the blue triangle (preimage) and the red triangle (image).
Two Reflections The vertices of $\triangle ABC$ are $A(-5,1), B(-3,6),$ and $C(2,3)$. Use this information to answer questions 23-26.

23. Plot $\triangle ABC$ on the coordinate plane.
24. Reflect $\triangle ABC$ over $y = 1$. Find the coordinates of $\triangle A'B'C'$.
25. Reflect $\triangle A'B'C'$ over $y = -3$. Find the coordinates of $\triangle A''B''C''$.
26. What one transformation would be the same as this double reflection?

Two Reflections The vertices of $\triangle DEF$ are $D(6,-2), E(8,-4),$ and $F(3,-7)$. Use this information to answer questions 27-30.

27. Plot $\triangle DEF$ on the coordinate plane.
28. Reflect $\triangle DEF$ over $x = 2$. Find the coordinates of $\triangle D'E'F'$.
29. Reflect $\triangle D'E'F'$ over $x = -4$. Find the coordinates of $\triangle D''E''F''$.
30. What one transformation would be the same as this double reflection?

Review Queue Answers

1. Examples are: To flip an image over a line; A mirror image.
2. $A'(3,2)$
3. the $y-$axis
12.4 Rotations

Learning Objectives

• Find the image of a figure in a rotation in a coordinate plane.

Review Queue

1. Reflect $\triangle XYZ$ with vertices $X(9, 2), Y(2, 4)$ and $Z(7, 8)$ over the y-axis. What are the vertices of $\triangle X'Y'Z'$?
2. Reflect $\triangle X'Y'Z'$ over the x-axis. What are the vertices of $\triangle X''Y''Z''$?
3. How do the coordinates of $\triangle X''Y''Z''$ relate to $\triangle XYZ$?

Know What? The international symbol for recycling is to the right. It is three arrows rotated around a point. Let’s assume that the arrow on the top is the preimage and the other two are its images. Find the center of rotation and the angle of rotation for each image.

Defining Rotations

Rotation: A transformation where a figure is turned around a fixed point to create an image.

The lines drawn from the preimage to the center of rotation, and from the center of rotation to the image form the angle of rotation. In this section, we will only do counterclockwise rotations.

Example 1: A rotation of 80° clockwise is the same as what counterclockwise rotation?
12.4. Rotations

Solution: There are 360° around a point. So, an 80° rotation clockwise is the same as a 360° − 80° = 280° rotation counterclockwise.

Example 2: A rotation of 160° counterclockwise is the same as what clockwise rotation?
Solution: 360° − 160° = 200° clockwise rotation.

Investigation 12-1: Drawing a Rotation of 100°
Tools Needed: pencil, paper, protractor, ruler

1. Draw △ABC and a point R.

2. Draw RB.

3. Place the center of a protractor on R and the 0° line on RB. Mark a 100° angle.
4. Mark B' on the 100° line so $RB = RB'$.

5. Repeat steps 2-4 with A and C.

6. Make $\triangle A'B'C'$.

Use this process to rotate any figure.

Example 3: Rotate rectangle $RECT80^\circ$ counterclockwise around P.
Solution: Use Investigation 12-1. In step 3, change the angle to 80°. Each angle of rotation is 80°.

\[
\begin{align*}
\angle RPR' &= 80° \\
\angle EPE' &= 80° \\
\angle CPC' &= 80° \\
\angle TPT' &= 80°
\end{align*}
\]

180° Rotation

To rotate a figure 180°, in the \(x-y\) plane, we use the origin as the center of the rotation. A 180° angle is called a straight angle. So, an image rotated over the origin 180° will be on the same line and the same distance away from the origin as the preimage, but on the other side.

Example 4: Rotate \(\triangle ABC\), with vertices \(A(7, 4), B(6, 1),\) and \(C(3, 1)\), 180°. Find the coordinates of \(\triangle A'B'C'\).

Solution: You can either use Investigation 12-1 or the hint given above to find \(\triangle A'B'C'\). First, graph the triangle. If \(A\) is \((7, 4)\), that means it is 7 units to the right of the origin and 4 units up. \(A'\) would then be 7 units to the left of the origin and 4 units down.
Rotation of 180°: \((x, y) \rightarrow (-x, -y)\)

Recall from the second section that a rotation is an isometry. This means that \(\triangle ABC \cong \triangle A'B'C'\). You can use the distance formula to show this.

90° Rotation

Similar to the 180° rotation, the image of a 90° will be the same distance away from the origin as its preimage, but rotated 90°.

Example 5: Rotate \(ST\) 90°.

Solution: When rotating something 90°, use Investigation 12-1 to see if there is a pattern.
12.4. Rotations

Rotation of 90°: $(x, y) \rightarrow (-y, x)$

Rotation of 270°
A rotation of 270° counterclockwise would be the same as a rotation of 90° plus a rotation of 180°. So, if the values of a 90° rotation are $(-y, x)$, then a 270° rotation would be the opposite sign of each, or $(y, -x)$.

Rotation of 270°: $(x, y) \rightarrow (y, -x)$

Example 6: Find the coordinates of $ABCD$ after a 270° rotation.
Solution: Using the rule, we have:

\[(x, y) \rightarrow (y, -x)\]

\[A(-4, 5) \rightarrow A'(5, 4)\]

\[B(1, 2) \rightarrow B'(2, -1)\]

\[C(-6, -2) \rightarrow C'(-2, 6)\]

\[D(-8, 3) \rightarrow D'(3, 8)\]

While we can rotate any image any amount of degrees, only \(90^\circ, 180^\circ\), and \(270^\circ\) have special rules. To rotate a figure by an angle measure other than these three, you must use Investigation 12-1.

Example 7: Algebra Connection The rotation of a quadrilateral is shown below. What is the measure of \(x\) and \(y\)?

Solution: Because a rotation is an isometry, we can set up two equations to solve for \(x\) and \(y\).
12.4. Rotations

Know What? Revisited The center of rotation is shown in the picture to the right. If we draw rays to the same place in each arrow, the two images are a 120° rotation in either direction.

Review Questions

- Questions 1-10 are similar to Examples 1 and 2.
- Questions 11-16 are similar to Investigation 12-1 and Example 3.
- Questions 17-25 are similar to Examples 4-6.
- Questions 26-28 are similar to Example 7.
- Questions 29-34 are similar to Examples 4-6.
- Questions 34-37 are a review.
- Question 38 is similar to Example 4.

In the questions below, every rotation is \textit{counterclockwise}, unless otherwise stated.

1. If you rotated the letter \(p\) 180° counterclockwise, what letter would you have?
2. If you rotated the letter \(p\) 180° \textit{clockwise}, what letter would you have?
3. A 90° clockwise rotation is the same as what counterclockwise rotation?
4. A 270° clockwise rotation is the same as what counterclockwise rotation?
5. A 210° counterclockwise rotation is the same as what clockwise rotation?
6. A 120° counterclockwise rotation is the same as what clockwise rotation?
7. A 340° counterclockwise rotation is the same as what clockwise rotation?
8. Rotating a figure 360° is the same as what other rotation?
9. Does it matter if you rotate a figure 180° clockwise or counterclockwise? Why or why not?
10. When drawing a rotated figure and using your protractor, would it be easier to rotate the figure 300° counterclockwise or 60° clockwise? Explain your reasoning.

Using Investigation 12-1, rotate each figure around point P the given angle measure.

11. 50°

12. 120°

13. 200°

14. 330°

15. 75°
12.4. Rotations

16. 170°

Rotate each figure in the coordinate plane the given angle measure. The center of rotation is the origin.

17. 180°

18. 90°

19. 180°
20. 270°

21. 90°

22. 270°
23. 180°

24. 270°

25. 90°
Algebra Connection Find the measure of x in the rotations below. The blue figure is the preimage.

26.

27.

28.

Find the angle of rotation for the graphs below. The center of rotation is the origin and the blue figure is the preimage. Your answer will be 90°, 270°, or 180°.
12.4. Rotations

29.

30.

31.
Two Reflections The vertices of $\triangle GHI$ are $G(-2, 2), H(8, 2),$ and $I(6, 8)$. Use this information to answer questions 24-27.

35. Plot $\triangle GHI$ on the coordinate plane.
36. Reflect $\triangle GHI$ over the $x-$axis. Find the coordinates of $\triangle G'H'I'$.
37. Reflect $\triangle G'H'I'$ over the $y-$axis. Find the coordinates of $\triangle G''H''I''$.
38. What one transformation would be the same as this double reflection?
Review Queue Answers

1. \(X'(−9, 2), Y'(−2, 4), Z'(−7, 8)\)
2. \(X''(−9, −2), Y''(−2, −4), Z''(−7, −8)\)
3. \(\triangle X''Y''Z''\) is the double negative of \(\triangle XYZ\); \((x, y) \rightarrow (−x, −y)\)
12.5 Composition of Transformations

Learning Objectives

- Perform a glide reflection.
- Perform a reflection over parallel lines and the axes.
- Determine a single transformation that is equivalent to a composite of two transformations.

Review Queue

1. Reflect $ABCD$ over the x–axis. Find the coordinates of $A'B'C'D'$.

2. Translate $A'B'C'D'$ such that $(x, y) \rightarrow (x + 4, y)$. Find the coordinates of $A''B''C''D''$.

Know What? An example of a glide reflection is your own footprint. The equations to find your average footprint are in the diagram to the right. Find your average footprint and write the transformation rule for one stride.
Glide Reflections

Now that we have learned all our rigid transformations, or isometries, we can perform more than one on the same figure.

Composition (of transformations): To perform more than one transformation on a figure.

Glide Reflection: A composition of a reflection and a translation. The translation is in a direction parallel to the line of reflection.

For any glide reflection, order does not matter.

In the Review Queue above, you performed a glide reflection on $ABCD$. If you reflect over a vertical line, the translation will be up or down, and if you reflect over a horizontal line, the translation will be to the left or right.

Example 1: Reflect $\triangle ABC$ over the $y-$axis and then translate the image 8 units down.

Solution: The green image to the right is the final answer.
Compositions can always be written as one rule.

Example 2: Write a single rule for $\triangle ABC$ to $\triangle A''B''C''$ from Example 1.

Solution: Looking at the coordinates of A to A'', the $x-$value is the opposite sign and the $y-$value is $y - 8$. Therefore the rule would be $(x,y) \rightarrow (-x, y - 8)$.

Reflections over Parallel Lines

The next composition we will discuss is a double reflection over parallel lines. For this composition, we will only use horizontal or vertical lines.

Example 3: Reflect $\triangle ABC$ over $y = 3$ and $y = -5$.
Solution: Unlike a glide reflection, order matters. Therefore, you would reflect over \(y = 3 \) first, (red triangle) then a reflection over \(y = -5 \) (green triangle).

Example 4: Write a single rule for \(\triangle ABC \) to \(\triangle A''B''C'' \) from Example 3.

Solution: In the graph, the two lines are 8 units apart \((3 - (-5)) = 8\). The figures are 16 units apart. The double reflection is the same as a translation that is double the distance between the parallel lines.

\[
(x, y) \rightarrow (x, y - 16)
\]

Reflections over Parallel Lines Theorem: The composition of two reflections over parallel lines that are \(h \) units apart, it is the same as a translation of \(2h \) units.
Be careful with this theorem because it does not say which direction the translation is in.

Example 5: $\triangle DEF$ has vertices $D(3, -1), E(8, -3),$ and $F(6, 4)$. Reflect $\triangle DEF$ over $x = -5$ and $x = 1$. Determine which one translation this double reflection would be the same as.

Solution: From the Reflections over Parallel Lines Theorem, we know that this double reflection is going to be the same as a single translation of $2(1 - (-5))$ or 12 units.

First, reflect over $x = -5$

Second, reflect over $x = 1$

Comparing the preimage and image, this is a translation of 12 units to the right.
If the lines of reflection were switched, then it would have been a translation of 12 units to the **left**.

Reflections over the \(x\) and \(y\) Axes

You can also reflect over intersecting lines. First, we will reflect over the \(x\) and \(y\) axes.

Example 6: Reflect \(\triangle DEF\) from Example 5 over the \(x\)-axis, followed by the \(y\)-axis. Find the coordinates of \(\triangle D''E''F''\) and the one transformation this double reflection is the same as.

Solution: \(\triangle D''E''F''\) is the green triangle in the graph to the left. If we compare the coordinates of it to \(\triangle DEF\), we have:

\[
D(3, -1) \rightarrow D'(3, 1) \\
E(8, -3) \rightarrow E'(-8, 3) \\
F(6, 4) \rightarrow F'(-6, -4)
\]

From the rules of rotations in the previous section, this is also an \(180^\circ\) rotation.

Reflection over the Axes Theorem: If you compose two reflections over each axis, then the final image is a rotation of \(180^\circ\) of the original.

With this particular composition, order does not matter.

Reflections over Intersecting Lines

For this composition, we are going to take it out of the coordinate plane.

Example 7: Copy the figure below and reflect it over \(l\), followed by \(m\).
Solution: The easiest way to reflect the triangle is to fold your paper on each line of reflection and draw the image. It should look like this:

(Patty paper could be used here).

The green triangle is the final answer.

Investigation 12-2: Double Reflection over Intersecting Lines

Tools Needed: Example 7, protractor, ruler, pencil

1. Take your answer from Example 7 and measure the angle of intersection for lines l and m. If you copied it from the text, it is 55°.
2. Draw lines from the corresponding points on the blue triangle and the green triangle.
3. Measure this angle using your protractor. How does it related to 55°?

If you copied the image exactly from the text, the angle is 110° counterclockwise.
Notice that order would matter in this composition. If we had reflected the blue triangle over \(m \) followed by \(l \), then the green triangle would be rotated 110° clockwise.

Reflection over Intersecting Lines Theorem: A composition of two reflections over lines that intersect at \(x° \), then the resulting image is a rotation of \(2x° \). The center of rotation is the point of intersection.

Example 8: A square is reflected over two lines that intersect at a 79° angle. What one transformation will this be the same as?

Solution: From the theorem above, this is the same as a rotation of \(2 \cdot 79° = 158° \).

Know What? Revisited The average 6 foot tall man has a 0.415 \(\times \) 6 = 2.5 foot stride. Therefore, the transformation rule for this person would be \((x, y) \rightarrow (-x, y + 2.5)\).

Review Questions

- Questions 1-3 use the theorems learned in this section.
- Questions 4-12 are similar to Examples 1 and 2.
- Questions 13-19 are similar to Examples 3-5.
- Questions 20-22 are similar to Example 6.
- Questions 23-30 are similar to Example 8 and use the theorems learned in this section.

1. Explain why the composition of two or more isometries must also be an isometry.
2. What one transformation is the same as a reflection over two parallel lines?
3. What one transformation is the same as a reflection over two intersecting lines?

Use the graph of the square to the left to answer questions 4-6.
4. Perform a glide reflection over the $x-$axis and to the right 6 units. Write the new coordinates.
5. What is the rule for this glide reflection?
6. What glide reflection would move the image back to the preimage?

Use the graph of the square to the left to answer questions 7-9.

7. Perform a glide reflection to the right 6 units, then over the $x-$axis. Write the new coordinates.
8. What is the rule for this glide reflection?
9. Is the rule in #8 different than the rule in #5? Why or why not?

Use the graph of the triangle to the left to answer questions 10-12.

10. Perform a glide reflection over the $y-$axis and down 5 units. Write the new coordinates.
11. What is the rule for this glide reflection?
12. What glide reflection would move the image back to the preimage?

Use the graph of the triangle to the left to answer questions 13-15.
13. Reflect the preimage over $y = -1$ followed by $y = -7$. Draw the new triangle.
14. What one transformation is this double reflection the same as?
15. Write the rule.

Use the graph of the triangle to the left to answer questions 16-18.

16. Reflect the preimage over $y = -7$ followed by $y = -1$. Draw the new triangle.
17. What one transformation is this double reflection the same as?
18. Write the rule.
19. How do the final triangles in #13 and #16 differ?

Use the trapezoid in the graph to the left to answer questions 20-22.
20. Reflect the preimage over the $x-$axis then the $y-$axis. Draw the new trapezoid.
21. Now, start over. Reflect the trapezoid over the $y-$axis then the $x-$axis. Draw this trapezoid.
22. Are the final trapezoids from #20 and #21 different? Why do you think that is?

Answer the questions below. Be as specific as you can.

23. Two parallel lines are 7 units apart. If you reflect a figure over both how far apart with the preimage and final image be?
24. After a double reflection over parallel lines, a preimage and its image are 28 units apart. How far apart are the parallel lines?
25. Two lines intersect at a 165° angle. If a figure is reflected over both lines, how far apart will the preimage and image be?
26. What is the center of rotation for #25?
27. Two lines intersect at an 83° angle. If a figure is reflected over both lines, how far apart will the preimage and image be?
28. A preimage and its image are 244° apart. If the preimage was reflected over two intersecting lines, at what angle did they intersect?
29. A preimage and its image are 98° apart. If the preimage was reflected over two intersecting lines, at what angle did they intersect?
30. After a double reflection over parallel lines, a preimage and its image are 62 units apart. How far apart are the parallel lines?

Review Queue Answers

1. $A'(−2, −8), B'(4, −5), C'(−4, −1), D'(−6, −6)$
2. $A''(2, −8), B''(8, −5), C''(0, −1), D''(−2, −6)$
12.6 Extension: Tessellating Polygons

Learning Objectives

- Tessellating regular polygons

What is a Tessellation?

You have probably seen tessellations before. Examples of a tessellation are: a tile floor, a brick or block wall, a checker or chess board, and a fabric pattern.

Tessellation: A tiling over a plane with one or more figures such that the figures fill the plane with no overlaps and no gaps.

Notice the hexagon (cubes, first tessellation) and the quadrilaterals fit together perfectly. If we keep adding more, they will entirely cover the plane with no gaps or overlaps.

We are only going to worry about tessellating regular polygons. To tessellate a shape it must be able to exactly surround a point, or the sum of the angles around each point in a tessellation must be 360°. The only regular polygons with this feature are equilateral triangles, squares, and regular hexagons.

Example 1: Draw a tessellation of equilateral triangles.

Solution: In an equilateral triangle each angle is 60°. Therefore, six triangles will perfectly fit around each point.

Extending the pattern, we have:
Example 2: Does a regular pentagon tessellate?

Solution: First, recall that there are 540° in a pentagon. Each angle in a regular pentagon is $540^\circ \div 5 = 108^\circ$. From this, we know that a regular pentagon will not tessellate by itself because 108° times 2 or 3 does not equal 360°.

Tessellations can also be much more complicated. Check out http://www.mathsisfun.com/geometry/tessellation.html to see other tessellations and play with the Tessellation Artist, which has a link at the bottom of the page.

Review Questions

1. You were told that equilateral triangles, squares, and regular hexagons are the only regular polygons that tessellate. Tessellate a square. Add color to your design.
2. What is an example of a tessellated square in real life?
3. How many regular hexagons will fit around one point? (First, recall how many degrees are in a hexagon, and then figure out how many degrees are in each angle of a regular polygon. Then, use this number to see how many of them fit around a point.)
4. Using the information from #2, tessellate a regular hexagon. Add color to your design.
5. You can also tessellate two regular polygons together. Try tessellating a regular hexagon and an equilateral triangle. First, determine how many of each fit around a point and then repeat the pattern. Add color to your design.
12.7 Chapter 12 Review

Keywords & Theorems

Exploring Symmetry

- Line of Symmetry
- Line Symmetry
- Rotational Symmetry
- Center of Rotation
- Angle of Rotation

Translations

- Transformation
- Rigid Transformation
- Translation

Reflections

- Reflection
- Line of Reflection
- Reflection over the \(y-axis \)
- Reflection over the \(x-axis \)
- Reflection over \(y = x \)
- Reflection over \(y = -x \)

Rotations

- Rotation
- Center of Rotation
- Angle of Rotation
- Rotation of \(180^\circ \)
- Rotation of \(90^\circ \)
- Rotation of \(270^\circ \)

Compositions of Transformations

- Composition (of transformations)
- Glide Reflection
- Reflections over Parallel Lines Theorem
- Reflection over the Axes Theorem
- Reflection over Intersecting Lines Theorem

Extension: Tessellating Polygons

- Tessellation
Review Questions

Match the description with its rule.

1. Reflection over the y–axis - A. $(y, -x)$
2. Reflection over the x–axis - B. $(-y, -x)$
3. Reflection over $y = x$ - C. $(-x, y)$
4. Reflection over $y = -x$ - D. $(-y, x)$
5. Rotation of 180° - E. $(x, -y)$
6. Rotation of 90° - F. (y, x)
7. Rotation of 270° - G. (x, y)
8. Rotation of 360° - H. $(-x, -y)$

Texas Instruments Resources

In the CK-12 Texas Instruments Geometry FlexBook® resource, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9697 .
Keywords: Define, write theorems, and/or draw a diagram for each word below.

1st Section: Exploring Symmetry

Line of Symmetry

2nd Section: Translations

Transformation

Rigid Transformation
Translation

Homework:

3rd Section: Reflections

Reflection

Line of Reflection

Reflection over the y–axis

Reflection over the x–axis

Reflections over a horizontal line

Reflections over a vertical line

Reflection over $y = x$

Reflection over $y = -x$

Homework:

4th Section: Rotations

Rotation

Center of Rotation

Angle of Rotation

Rotation of 180°

Rotation of 90°

Rotation of 270°

Homework:

5th Section: Compositions of Transformations

Composition (of transformations)

Glide Reflection

Reflections over Parallel Lines Theorem

Reflection over the Axes Theorem
Reflection over Intersecting Lines Theorem

Homework:

Extension: Tessellating Polygons

Tessellation

Homework: